Loading…
Reduction of superparamagnetic clusters in the [Co/Cu(111)] n nanofilms, induced by the quantum size effect
It is known that the quantum size effects are important for the formation of morphological properties of metal films. The regularities in the behavior of the superparamagnetic magnetoresistive effect in multilayer nanofilms Co/Cu(111) in a magnetic field, found in the work, indicate the influence of...
Saved in:
Published in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2012-09, Vol.38 (9), p.848-853 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is known that the quantum size effects are important for the formation of morphological properties of metal films. The regularities in the behavior of the superparamagnetic magnetoresistive effect in multilayer nanofilms Co/Cu(111) in a magnetic field, found in the work, indicate the influence of the electron size effect on the formation of clusters in these films. The results of measurements of the high-field magnetoresistive effect are reported for multilayer films [Co/Cu(111)]20 with a constant thickness of cobalt layers and the thickness of copper layer varying from film to film. It is found that an effective size of superparamagnetic formations is reduced in the films with thickness of the copper layers corresponding to the maxima of the antiferromagnetic exchange coupling between cobalt layers. It is suggested that the observed “grinding” of superparamagnetic particles is caused by oscillating changes in the electron density in the interface layer Co/Cu, induced by electron quantum size effect in the copper layers. |
---|---|
ISSN: | 1063-777X 1090-6517 |
DOI: | 10.1063/1.4752100 |