Loading…
Monte Carlo simulations of a surface reaction model showing spatio-temporal pattern formations and oscillations
Results of dynamic Monte Carlo simulations of a model for CO oxidation on a reconstructing Pt(100) surface are presented. A comparison is made between simulations that explicitly include surface diffusion of adsorbed CO and simulations without diffusion. Oscillatory behavior as well as spatio-tempor...
Saved in:
Published in: | The Journal of chemical physics 1998-04, Vol.108 (14), p.5921-5934 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Results of dynamic Monte Carlo simulations of a model for CO oxidation on a reconstructing Pt(100) surface are presented. A comparison is made between simulations that explicitly include surface diffusion of adsorbed CO and simulations without diffusion. Oscillatory behavior as well as spatio-temporal pattern formation are studied as a function of system size. In the absence of diffusion the amplitude of kinetic oscillations decreases with grid size and oscillations are not stable. Spatio-temporal patterns appear, as expected for an excitable medium. Such patterns become stabilized by structural substrate defects. The length scale of the patterns is in the order of 10–100 nm, the temporal period of the oscillations is around 200 seconds. Inclusion of diffusion stabilizes and synchronizes oscillations. Spatio-temporal features now appear with larger spatial dimensions. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.476003 |