Loading…
Point defects introduced by InN alloying into In x Ga1− x N probed using a monoenergetic positron beam
Native defects in InxGa1−xN (x = 0.06-0.14) grown by metal organic chemical vapor deposition were studied using a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation as a function of incident positron energy for InxGa1−xN showed that vacancy-type def...
Saved in:
Published in: | Journal of applied physics 2013-03, Vol.113 (12) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Native defects in InxGa1−xN (x = 0.06-0.14) grown by metal organic chemical vapor deposition were studied using a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation as a function of incident positron energy for InxGa1−xN showed that vacancy-type defects were introduced with increasing InN composition, and the major defect species was identified as complexes between a cation vacancy and a nitrogen vacancy. The concentration of the divacancy, however, was found to be suppressed by Mg doping. The momentum distribution of electrons at the InxGa1−xN/GaN interface was close to that in defect-free GaN or InxGa1−xN, which was attributed to localization of positrons at the interface due to the built-in electric field, and to suppression of positron trapping by vacancy-type defects. We have also shown that the diffusion property of positrons is sensitive to an electric field near the InxGa1−xN/GaN interface. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4795815 |