Loading…
Coherency strain enhanced dielectric-temperature property of rare-earth doped BaTiO3
Core/shell-grained BaTiO3 samples were prepared with addition of rare earth elements. The core/shell interface was semi-coherent, and many misfit dislocations formed in Dy-doped samples. In contrast, a coherent interface and few dislocations were observed in Ho- and Er-doped samples. Dy-doped sample...
Saved in:
Published in: | Applied physics letters 2013-03, Vol.102 (11) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Core/shell-grained BaTiO3 samples were prepared with addition of rare earth elements. The core/shell interface was semi-coherent, and many misfit dislocations formed in Dy-doped samples. In contrast, a coherent interface and few dislocations were observed in Ho- and Er-doped samples. Dy-doped samples exhibited poor temperature stability, showing a peak with no frequency dispersion. Ho- and Er-doped samples exhibited a broad curve with frequency dispersion. This improved temperature stability is attributed to the coherency strain, which leads to the formation of polar nano-regions in the shell. Coherency at the core/shell interface is critical to improve the temperature stability of core/shell-structured BaTiO3. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4798273 |