Loading…
Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes
We demonstrated three-dimensional (3D) graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes (LEDs). A 3D graphene foam structure grown on 3D Cu foam using a chemical vapor deposition method was transferred onto a p-GaN layer of blue LEDs. Optical and electric...
Saved in:
Published in: | Applied physics letters 2013-04, Vol.102 (16) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrated three-dimensional (3D) graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes (LEDs). A 3D graphene foam structure grown on 3D Cu foam using a chemical vapor deposition method was transferred onto a p-GaN layer of blue LEDs. Optical and electrical performances were greatly enhanced by employing 3D graphene foam as transparent conductive electrodes in blue LED devices, which were analyzed by electroluminescence measurements, micro-Raman spectroscopy, and light intensity-current-voltage testing. The forward operating voltage and the light output power at an injection current of 100 mA of the GaN-based blue LEDs with a graphene foam-based transparent conductive electrode were improved by ∼26% and ∼14%, respectively. The robustness, high transmittance, and outstanding conductivity of 3D graphene foam show great potentials for advanced transparent conductive electrodes in optoelectronic devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4801763 |