Loading…
Self sensing feedback for dielectric elastomer actuators
Self sensing Dielectric Elastomer Actuator (DEA) artificial muscles will enable the creation of soft, lightweight robots with animal-like capabilities. We demonstrate a fast, accurate, and economic self sensing algorithm that enables an arbitrary voltage oscillation to be used to sense DEA capacitan...
Saved in:
Published in: | Applied physics letters 2013-05, Vol.102 (19) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self sensing Dielectric Elastomer Actuator (DEA) artificial muscles will enable the creation of soft, lightweight robots with animal-like capabilities. We demonstrate a fast, accurate, and economic self sensing algorithm that enables an arbitrary voltage oscillation to be used to sense DEA capacitance during actuation in a manner that is robust to significant changes in electrode resistance and leakage current. Not only we can use this algorithm to emulate the proprioceptive feedback found in natural muscle but also we can use it for the online characterisation and analysis of DEA behavior. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4805352 |