Loading…
Robust sensing methodology for detecting change with bistable circuitry dynamics tailoring
In contrast to monitoring natural frequency shift, bifurcation-based sensing techniques utilize dramatic switches in response amplitude to detect structural change. We demonstrate a highly sensitive bifurcation-based sensing method requiring only the monitored structure, a transduction mechanism, an...
Saved in:
Published in: | Applied physics letters 2013-05, Vol.102 (20) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast to monitoring natural frequency shift, bifurcation-based sensing techniques utilize dramatic switches in response amplitude to detect structural change. We demonstrate a highly sensitive bifurcation-based sensing method requiring only the monitored structure, a transduction mechanism, and bistable electric circuitry. The system configuration is broadly applicable from, e.g., microscale mass sensing to structural health monitoring. In contrast to single bifurcation events of past techniques, the present methodology introduces new bifurcations that may be utilized sequentially for monitoring numerous thresholds of structural parameter change. We show that bifurcation-based sensing potential and versatility is greatly advanced. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4807772 |