Loading…
Thermal runaway in multijunction solar cells
A small fraction of GaInP2/GaAs/Ge triple junction solar cells exposed to the 6× concentrated air mass zero spectrum at 523 K for 5 min was found to be severely shunted afterwards. A combination of electroluminescence imaging and focused ion beam cross sectioning revealed that pre-existing top-middl...
Saved in:
Published in: | Applied physics letters 2013-06, Vol.102 (23) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A small fraction of GaInP2/GaAs/Ge triple junction solar cells exposed to the 6× concentrated air mass zero spectrum at 523 K for 5 min was found to be severely shunted afterwards. A combination of electroluminescence imaging and focused ion beam cross sectioning revealed that pre-existing top-middle cell shunts were responsible for the observed degradation. Joule heating in the shunt resistance limiting Ge substrate is modeled and exhibits a thermal runaway effect above a critical voltage, in agreement with the experimental observation. The implications for current and future multijunction cells are discussed. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4809952 |