Loading…
Fabrication and operation of an electrostatic actuator for controlling nanometer-scale gaps in collapsed cantilever heterostructures
Vertical electrostatic wedge actuators are described that control nanometer-scale gaps between surfaces. Standard parallel-plate electrostatic actuators become difficult to stabilize across extremely small gaps because the nature of the forces and the force laws that describe them often deviate from...
Saved in:
Published in: | Applied physics letters 2013-06, Vol.102 (24) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vertical electrostatic wedge actuators are described that control nanometer-scale gaps between surfaces. Standard parallel-plate electrostatic actuators become difficult to stabilize across extremely small gaps because the nature of the forces and the force laws that describe them often deviate from a Coulomb's law dependence. In this work, a nanometer-scale air gap between a collapsed cantilever structure formed by two facing In0.53Ga0.47As surfaces, with areas of tens of microns, was controlled by a wedge electrostatic actuator. Upon actuation, the gap spacing between the surfaces was tuned over a maximum range of 55 nm with an applied voltage of 60 V. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4812185 |