Loading…

Strained-Si/strained-Ge type-II staggered heterojunction gate-normal-tunneling field-effect transistor

A SiGe-based n-channel tunnel field-effect transistor design employing a strained-Si/strained-Ge staggered-gap heterojunction with a small effective band-gap (122 meV) at the interface is investigated via numerical simulations using a semi-classical quantum correction obtained from the density-gradi...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2013-08, Vol.103 (9)
Main Authors: Hsu, William, Mantey, Jason, Register, Leonard F., Banerjee, Sanjay K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-f9263521bb9449fdcfed80ee50c3d4d74065e58afaf1667d54752655170e26123
cites cdi_FETCH-LOGICAL-c295t-f9263521bb9449fdcfed80ee50c3d4d74065e58afaf1667d54752655170e26123
container_end_page
container_issue 9
container_start_page
container_title Applied physics letters
container_volume 103
creator Hsu, William
Mantey, Jason
Register, Leonard F.
Banerjee, Sanjay K.
description A SiGe-based n-channel tunnel field-effect transistor design employing a strained-Si/strained-Ge staggered-gap heterojunction with a small effective band-gap (122 meV) at the interface is investigated via numerical simulations using a semi-classical quantum correction obtained from the density-gradient model. A gate-normal tunneling geometry is used to increase tunneling area and reduce subthreshold swing. The strain leads to degeneracy breaking among the silicon conduction band valleys, reducing the density of states and associated quantum capacitance with better gate-to-tunnel barrier coupling. Performance evaluation using a figure-of-merit “I60,” where the drain current corresponds to a subthreshold slope of 60 mV/decade, suggests that the device has the potential to be competitive with modern metal-oxide-semiconductor field-effect transistors.
doi_str_mv 10.1063/1.4819458
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4819458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4819458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f9263521bb9449fdcfed80ee50c3d4d74065e58afaf1667d54752655170e26123</originalsourceid><addsrcrecordid>eNo1kL1OwzAURi0EEqEw8AZZGdz6-i_JiCookSoxFObIja-Dq9SpbHfo21NEO33nW85wCHkGNgemxQLmsoZGqvqGFMCqigqA-pYUjDFBdaPgnjyktDtfxYUoiNvkaHxASzd-ka68wjKfDkjbtkzZDANGtOUPZozT7hj67KdQDiYjDVPcm5HmYwg4-jCUzuNoKTqHfS7PupB8ylN8JHfOjAmfLjsj3-9vX8sPuv5ctcvXNe15ozJ1DddCcdhuGykbZ3uHtmaIivXCSltJphWq2jjjQOvKKlkprpWCiiHXwMWMvPx7-zilFNF1h-j3Jp46YN1foA66SyDxC7JHWUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strained-Si/strained-Ge type-II staggered heterojunction gate-normal-tunneling field-effect transistor</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hsu, William ; Mantey, Jason ; Register, Leonard F. ; Banerjee, Sanjay K.</creator><creatorcontrib>Hsu, William ; Mantey, Jason ; Register, Leonard F. ; Banerjee, Sanjay K.</creatorcontrib><description>A SiGe-based n-channel tunnel field-effect transistor design employing a strained-Si/strained-Ge staggered-gap heterojunction with a small effective band-gap (122 meV) at the interface is investigated via numerical simulations using a semi-classical quantum correction obtained from the density-gradient model. A gate-normal tunneling geometry is used to increase tunneling area and reduce subthreshold swing. The strain leads to degeneracy breaking among the silicon conduction band valleys, reducing the density of states and associated quantum capacitance with better gate-to-tunnel barrier coupling. Performance evaluation using a figure-of-merit “I60,” where the drain current corresponds to a subthreshold slope of 60 mV/decade, suggests that the device has the potential to be competitive with modern metal-oxide-semiconductor field-effect transistors.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4819458</identifier><language>eng</language><ispartof>Applied physics letters, 2013-08, Vol.103 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f9263521bb9449fdcfed80ee50c3d4d74065e58afaf1667d54752655170e26123</citedby><cites>FETCH-LOGICAL-c295t-f9263521bb9449fdcfed80ee50c3d4d74065e58afaf1667d54752655170e26123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,778,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hsu, William</creatorcontrib><creatorcontrib>Mantey, Jason</creatorcontrib><creatorcontrib>Register, Leonard F.</creatorcontrib><creatorcontrib>Banerjee, Sanjay K.</creatorcontrib><title>Strained-Si/strained-Ge type-II staggered heterojunction gate-normal-tunneling field-effect transistor</title><title>Applied physics letters</title><description>A SiGe-based n-channel tunnel field-effect transistor design employing a strained-Si/strained-Ge staggered-gap heterojunction with a small effective band-gap (122 meV) at the interface is investigated via numerical simulations using a semi-classical quantum correction obtained from the density-gradient model. A gate-normal tunneling geometry is used to increase tunneling area and reduce subthreshold swing. The strain leads to degeneracy breaking among the silicon conduction band valleys, reducing the density of states and associated quantum capacitance with better gate-to-tunnel barrier coupling. Performance evaluation using a figure-of-merit “I60,” where the drain current corresponds to a subthreshold slope of 60 mV/decade, suggests that the device has the potential to be competitive with modern metal-oxide-semiconductor field-effect transistors.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kL1OwzAURi0EEqEw8AZZGdz6-i_JiCookSoxFObIja-Dq9SpbHfo21NEO33nW85wCHkGNgemxQLmsoZGqvqGFMCqigqA-pYUjDFBdaPgnjyktDtfxYUoiNvkaHxASzd-ka68wjKfDkjbtkzZDANGtOUPZozT7hj67KdQDiYjDVPcm5HmYwg4-jCUzuNoKTqHfS7PupB8ylN8JHfOjAmfLjsj3-9vX8sPuv5ctcvXNe15ozJ1DddCcdhuGykbZ3uHtmaIivXCSltJphWq2jjjQOvKKlkprpWCiiHXwMWMvPx7-zilFNF1h-j3Jp46YN1foA66SyDxC7JHWUg</recordid><startdate>20130826</startdate><enddate>20130826</enddate><creator>Hsu, William</creator><creator>Mantey, Jason</creator><creator>Register, Leonard F.</creator><creator>Banerjee, Sanjay K.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130826</creationdate><title>Strained-Si/strained-Ge type-II staggered heterojunction gate-normal-tunneling field-effect transistor</title><author>Hsu, William ; Mantey, Jason ; Register, Leonard F. ; Banerjee, Sanjay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f9263521bb9449fdcfed80ee50c3d4d74065e58afaf1667d54752655170e26123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, William</creatorcontrib><creatorcontrib>Mantey, Jason</creatorcontrib><creatorcontrib>Register, Leonard F.</creatorcontrib><creatorcontrib>Banerjee, Sanjay K.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, William</au><au>Mantey, Jason</au><au>Register, Leonard F.</au><au>Banerjee, Sanjay K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strained-Si/strained-Ge type-II staggered heterojunction gate-normal-tunneling field-effect transistor</atitle><jtitle>Applied physics letters</jtitle><date>2013-08-26</date><risdate>2013</risdate><volume>103</volume><issue>9</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>A SiGe-based n-channel tunnel field-effect transistor design employing a strained-Si/strained-Ge staggered-gap heterojunction with a small effective band-gap (122 meV) at the interface is investigated via numerical simulations using a semi-classical quantum correction obtained from the density-gradient model. A gate-normal tunneling geometry is used to increase tunneling area and reduce subthreshold swing. The strain leads to degeneracy breaking among the silicon conduction band valleys, reducing the density of states and associated quantum capacitance with better gate-to-tunnel barrier coupling. Performance evaluation using a figure-of-merit “I60,” where the drain current corresponds to a subthreshold slope of 60 mV/decade, suggests that the device has the potential to be competitive with modern metal-oxide-semiconductor field-effect transistors.</abstract><doi>10.1063/1.4819458</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-08, Vol.103 (9)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_4819458
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Strained-Si/strained-Ge type-II staggered heterojunction gate-normal-tunneling field-effect transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strained-Si/strained-Ge%20type-II%20staggered%20heterojunction%20gate-normal-tunneling%20field-effect%20transistor&rft.jtitle=Applied%20physics%20letters&rft.au=Hsu,%20William&rft.date=2013-08-26&rft.volume=103&rft.issue=9&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4819458&rft_dat=%3Ccrossref%3E10_1063_1_4819458%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-f9263521bb9449fdcfed80ee50c3d4d74065e58afaf1667d54752655170e26123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true