Loading…
Elastic, superconducting, and thermodynamic properties of the cubic metallic phase of AlH3 via first-principles calculations
The lattice dynamic, elastic, superconducting, and thermodynamic properties of the high-pressure cubic metallic phase AlH3 are studied within density function theory. The calculated elastic modulus and phonon dispersion curves at various pressures indicate that the cubic phase is both mechanically a...
Saved in:
Published in: | Journal of applied physics 2013-09, Vol.114 (11) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The lattice dynamic, elastic, superconducting, and thermodynamic properties of the high-pressure cubic metallic phase AlH3 are studied within density function theory. The calculated elastic modulus and phonon dispersion curves at various pressures indicate that the cubic phase is both mechanically and dynamically stable above 73 GPa. The superconducting transition temperature was calculated using Allen-Dynes modification of the McMillan formula based on the Bardeen-Cooper-Schrieffer theory. It is found that Tc approaches a linear decrease in the low pressure range at the rate dTC/dP≈−0.22 K/GPa but gradually decreases exponentially at higher pressure, and then it becomes 0 K upon further compression. The calculations indicate that Tc is about 2.042 K at 110 GPa, in agreement with experimental results. The soft phonon modes, especially the lowest acoustic mode, contribute almost 79% to the total electron-phonon coupling parameter sλ for cubic AlH3 at 73 GPa. However, they disappear gradually with increasing pressure, showing a responsibility for the variation of Tc. The thermodynamic properties of cubic AlH3, such as the dependence of thermal expansion coefficient αV on pressure and temperature, the specific heat capacity CP, as well as the electronic specific heat coefficient Cel, were also investigated by the quasi-harmonic approximation theory. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4821287 |