Loading…
A turnstile mechanism for fronts propagating in fluid flows
We consider the propagation of fronts in a periodically driven flowing medium. It is shown that the progress of fronts in these systems may be mediated by a turnstile mechanism akin to that found in chaotic advection. We first define the modified (“active”) turnstile lobes according to the evolution...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2013-12, Vol.23 (4), p.043106-043106 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the propagation of fronts in a periodically driven flowing medium. It is shown that the progress of fronts in these systems may be mediated by a turnstile mechanism akin to that found in chaotic advection. We first define the modified (“active”) turnstile lobes according to the evolution of point sources across a transport boundary. We then show that the lobe boundaries may be constructed from stable and unstable burning invariant manifolds (BIMs)—one-way barriers to front propagation analogous to traditional invariant manifolds for passive advection. Because the BIMs are one-dimensional curves in a three-dimensional (xyθ) phase space, their projection into xy-space exhibits several key differences from their advective counterparts: (lobe) areas are not preserved, BIMs may self-intersect, and an intersection between stable and unstable BIMs does not map to another such intersection. These differences must be accommodated in the correct construction of the new turnstile. As an application, we consider a lobe-based treatment protocol for protecting an ocean bay from an invading algae bloom. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.4824675 |