Loading…

Microfluidic electrical sorting of particles based on shape in a spiral microchannel

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We...

Full description

Saved in:
Bibliographic Details
Published in:Biomicrofluidics 2014-01, Vol.8 (1), p.014101-014101
Main Authors: DuBose, John, Lu, Xinyu, Patel, Saurin, Qian, Shizhi, Woo Joo, Sang, Xuan, Xiangchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113
cites cdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113
container_end_page 014101
container_issue 1
container_start_page 014101
container_title Biomicrofluidics
container_volume 8
creator DuBose, John
Lu, Xinyu
Patel, Saurin
Qian, Shizhi
Woo Joo, Sang
Xuan, Xiangchun
description Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.
doi_str_mv 10.1063/1.4862355
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4862355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127760189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</originalsourceid><addsrcrecordid>eNp9kU1LHTEYhUOpqFUX_QMl0E0tXDtJJh-zEYrYWlC60XXIJG-8kbnJNJkR-u-by71-Ql3lQB5OTs5B6CNpTkgj2Ddy0ipBGefv0D7pGF2Qhqv3z_Qe-lDKXdNwIindRXu0lZxVuY-ur4LNyQ9zcMFiGMBOOVgz4JLyFOItTh6Ppko7QMG9KeBwirgszQg4RGxwGUOu_GrtY5cmRhgO0Y43Q4Gj7XmAbn6cX59dLC5___x19v1yYTnrpoWXohemY21vG-udoqZtu164VlIJVinuwFDHGfOKGEqV5AKEV84BCCMJYQfodOM7zv0KnIU41Sh6zGFl8l-dTNAvb2JY6tt0r1knpexUNfiyNcjpzwxl0qtQLAyDiZDmogkntdja8fqtz6_QuzTnWL-nKaFSioaorlLHG6qWUUoG_xiGNHq9lSZ6u1VlPz1P_0g-jFOBrxug2DCZKaT4ptt_4fuUn0A9Os_-AZjWq6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127760189</pqid></control><display><type>article</type><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>PubMed Central</source><creator>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</creator><creatorcontrib>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</creatorcontrib><description>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4862355</identifier><identifier>PMID: 24753722</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell cycle ; Computer simulation ; Curvature ; Dielectrophoresis ; Flow paths ; Mathematical models ; Microchannels ; Organic chemistry ; Particle sorting ; Particle trajectories ; Regular ; Sheaths</subject><ispartof>Biomicrofluidics, 2014-01, Vol.8 (1), p.014101-014101</ispartof><rights>AIP Publishing LLC</rights><rights>2014 AIP Publishing LLC.</rights><rights>Copyright © 2014 AIP Publishing LLC 2014 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</citedby><cites>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24753722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DuBose, John</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Patel, Saurin</creatorcontrib><creatorcontrib>Qian, Shizhi</creatorcontrib><creatorcontrib>Woo Joo, Sang</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</description><subject>Cell cycle</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Dielectrophoresis</subject><subject>Flow paths</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Organic chemistry</subject><subject>Particle sorting</subject><subject>Particle trajectories</subject><subject>Regular</subject><subject>Sheaths</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEYhUOpqFUX_QMl0E0tXDtJJh-zEYrYWlC60XXIJG-8kbnJNJkR-u-by71-Ql3lQB5OTs5B6CNpTkgj2Ddy0ipBGefv0D7pGF2Qhqv3z_Qe-lDKXdNwIindRXu0lZxVuY-ur4LNyQ9zcMFiGMBOOVgz4JLyFOItTh6Ppko7QMG9KeBwirgszQg4RGxwGUOu_GrtY5cmRhgO0Y43Q4Gj7XmAbn6cX59dLC5___x19v1yYTnrpoWXohemY21vG-udoqZtu164VlIJVinuwFDHGfOKGEqV5AKEV84BCCMJYQfodOM7zv0KnIU41Sh6zGFl8l-dTNAvb2JY6tt0r1knpexUNfiyNcjpzwxl0qtQLAyDiZDmogkntdja8fqtz6_QuzTnWL-nKaFSioaorlLHG6qWUUoG_xiGNHq9lSZ6u1VlPz1P_0g-jFOBrxug2DCZKaT4ptt_4fuUn0A9Os_-AZjWq6g</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>DuBose, John</creator><creator>Lu, Xinyu</creator><creator>Patel, Saurin</creator><creator>Qian, Shizhi</creator><creator>Woo Joo, Sang</creator><creator>Xuan, Xiangchun</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><author>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cell cycle</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Dielectrophoresis</topic><topic>Flow paths</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Organic chemistry</topic><topic>Particle sorting</topic><topic>Particle trajectories</topic><topic>Regular</topic><topic>Sheaths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuBose, John</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Patel, Saurin</creatorcontrib><creatorcontrib>Qian, Shizhi</creatorcontrib><creatorcontrib>Woo Joo, Sang</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuBose, John</au><au>Lu, Xinyu</au><au>Patel, Saurin</au><au>Qian, Shizhi</au><au>Woo Joo, Sang</au><au>Xuan, Xiangchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>8</volume><issue>1</issue><spage>014101</spage><epage>014101</epage><pages>014101-014101</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24753722</pmid><doi>10.1063/1.4862355</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2014-01, Vol.8 (1), p.014101-014101
issn 1932-1058
1932-1058
language eng
recordid cdi_crossref_primary_10_1063_1_4862355
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); PubMed Central
subjects Cell cycle
Computer simulation
Curvature
Dielectrophoresis
Flow paths
Mathematical models
Microchannels
Organic chemistry
Particle sorting
Particle trajectories
Regular
Sheaths
title Microfluidic electrical sorting of particles based on shape in a spiral microchannel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20electrical%20sorting%20of%20particles%20based%20on%20shape%20in%20a%20spiral%20microchannel&rft.jtitle=Biomicrofluidics&rft.au=DuBose,%20John&rft.date=2014-01-01&rft.volume=8&rft.issue=1&rft.spage=014101&rft.epage=014101&rft.pages=014101-014101&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4862355&rft_dat=%3Cproquest_cross%3E2127760189%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127760189&rft_id=info:pmid/24753722&rfr_iscdi=true