Loading…
Microfluidic electrical sorting of particles based on shape in a spiral microchannel
Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We...
Saved in:
Published in: | Biomicrofluidics 2014-01, Vol.8 (1), p.014101-014101 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113 |
container_end_page | 014101 |
container_issue | 1 |
container_start_page | 014101 |
container_title | Biomicrofluidics |
container_volume | 8 |
creator | DuBose, John Lu, Xinyu Patel, Saurin Qian, Shizhi Woo Joo, Sang Xuan, Xiangchun |
description | Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation. |
doi_str_mv | 10.1063/1.4862355 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4862355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127760189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</originalsourceid><addsrcrecordid>eNp9kU1LHTEYhUOpqFUX_QMl0E0tXDtJJh-zEYrYWlC60XXIJG-8kbnJNJkR-u-by71-Ql3lQB5OTs5B6CNpTkgj2Ddy0ipBGefv0D7pGF2Qhqv3z_Qe-lDKXdNwIindRXu0lZxVuY-ur4LNyQ9zcMFiGMBOOVgz4JLyFOItTh6Ppko7QMG9KeBwirgszQg4RGxwGUOu_GrtY5cmRhgO0Y43Q4Gj7XmAbn6cX59dLC5___x19v1yYTnrpoWXohemY21vG-udoqZtu164VlIJVinuwFDHGfOKGEqV5AKEV84BCCMJYQfodOM7zv0KnIU41Sh6zGFl8l-dTNAvb2JY6tt0r1knpexUNfiyNcjpzwxl0qtQLAyDiZDmogkntdja8fqtz6_QuzTnWL-nKaFSioaorlLHG6qWUUoG_xiGNHq9lSZ6u1VlPz1P_0g-jFOBrxug2DCZKaT4ptt_4fuUn0A9Os_-AZjWq6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127760189</pqid></control><display><type>article</type><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>PubMed Central</source><creator>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</creator><creatorcontrib>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</creatorcontrib><description>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4862355</identifier><identifier>PMID: 24753722</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell cycle ; Computer simulation ; Curvature ; Dielectrophoresis ; Flow paths ; Mathematical models ; Microchannels ; Organic chemistry ; Particle sorting ; Particle trajectories ; Regular ; Sheaths</subject><ispartof>Biomicrofluidics, 2014-01, Vol.8 (1), p.014101-014101</ispartof><rights>AIP Publishing LLC</rights><rights>2014 AIP Publishing LLC.</rights><rights>Copyright © 2014 AIP Publishing LLC 2014 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</citedby><cites>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24753722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DuBose, John</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Patel, Saurin</creatorcontrib><creatorcontrib>Qian, Shizhi</creatorcontrib><creatorcontrib>Woo Joo, Sang</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</description><subject>Cell cycle</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Dielectrophoresis</subject><subject>Flow paths</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Organic chemistry</subject><subject>Particle sorting</subject><subject>Particle trajectories</subject><subject>Regular</subject><subject>Sheaths</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEYhUOpqFUX_QMl0E0tXDtJJh-zEYrYWlC60XXIJG-8kbnJNJkR-u-by71-Ql3lQB5OTs5B6CNpTkgj2Ddy0ipBGefv0D7pGF2Qhqv3z_Qe-lDKXdNwIindRXu0lZxVuY-ur4LNyQ9zcMFiGMBOOVgz4JLyFOItTh6Ppko7QMG9KeBwirgszQg4RGxwGUOu_GrtY5cmRhgO0Y43Q4Gj7XmAbn6cX59dLC5___x19v1yYTnrpoWXohemY21vG-udoqZtu164VlIJVinuwFDHGfOKGEqV5AKEV84BCCMJYQfodOM7zv0KnIU41Sh6zGFl8l-dTNAvb2JY6tt0r1knpexUNfiyNcjpzwxl0qtQLAyDiZDmogkntdja8fqtz6_QuzTnWL-nKaFSioaorlLHG6qWUUoG_xiGNHq9lSZ6u1VlPz1P_0g-jFOBrxug2DCZKaT4ptt_4fuUn0A9Os_-AZjWq6g</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>DuBose, John</creator><creator>Lu, Xinyu</creator><creator>Patel, Saurin</creator><creator>Qian, Shizhi</creator><creator>Woo Joo, Sang</creator><creator>Xuan, Xiangchun</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><author>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cell cycle</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Dielectrophoresis</topic><topic>Flow paths</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Organic chemistry</topic><topic>Particle sorting</topic><topic>Particle trajectories</topic><topic>Regular</topic><topic>Sheaths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuBose, John</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Patel, Saurin</creatorcontrib><creatorcontrib>Qian, Shizhi</creatorcontrib><creatorcontrib>Woo Joo, Sang</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuBose, John</au><au>Lu, Xinyu</au><au>Patel, Saurin</au><au>Qian, Shizhi</au><au>Woo Joo, Sang</au><au>Xuan, Xiangchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>8</volume><issue>1</issue><spage>014101</spage><epage>014101</epage><pages>014101-014101</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24753722</pmid><doi>10.1063/1.4862355</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2014-01, Vol.8 (1), p.014101-014101 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4862355 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); PubMed Central |
subjects | Cell cycle Computer simulation Curvature Dielectrophoresis Flow paths Mathematical models Microchannels Organic chemistry Particle sorting Particle trajectories Regular Sheaths |
title | Microfluidic electrical sorting of particles based on shape in a spiral microchannel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20electrical%20sorting%20of%20particles%20based%20on%20shape%20in%20a%20spiral%20microchannel&rft.jtitle=Biomicrofluidics&rft.au=DuBose,%20John&rft.date=2014-01-01&rft.volume=8&rft.issue=1&rft.spage=014101&rft.epage=014101&rft.pages=014101-014101&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4862355&rft_dat=%3Cproquest_cross%3E2127760189%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127760189&rft_id=info:pmid/24753722&rfr_iscdi=true |