Loading…

Raman scattering under structural and magnetic phase transitions in terbium ferroborate

The Raman scattering spectrum of single crystal TbFe3(BO3)4 was studied in the frequency range 3–500 cm−1 at temperatures from 2 to 300 K. It was found that in high- and low-temperature phases there exist additional phonon lines which were not known before. In the high-temperature phase, these lines...

Full description

Saved in:
Bibliographic Details
Published in:Low temperature physics (Woodbury, N.Y.) N.Y.), 2014-02, Vol.40 (2), p.171-178
Main Authors: Peschanskii, A. V., Yeremenko, A. V., Fomin, V. I., Bezmaternykh, L. N., Gudim, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Raman scattering spectrum of single crystal TbFe3(BO3)4 was studied in the frequency range 3–500 cm−1 at temperatures from 2 to 300 K. It was found that in high- and low-temperature phases there exist additional phonon lines which were not known before. In the high-temperature phase, these lines originate from LO–TO splitting of polar phonons. Appearance of the additional lines in the low temperature phase is due to both a reduction of the crystal symmetry under the phase transition and an increase of the primitive cell volume. It was established that the frequencies of some phonon lines in the magneto-ordered phase are shifted towards the high-energy region upon applying an external magnetic field along the third-order axis. The spectrum of two-magnon Raman scattering was investigated. It was shown that at low temperatures the two-magnon band has a complex shape that reflects specific features in the density of state of the magnon branches. The magnon energy at the Brillouin zone boundary was determined.
ISSN:1063-777X
1090-6517
DOI:10.1063/1.4865566