Loading…

Carbon nanotube field-effect devices with asymmetric electrode configuration by contact geometry

We have studied experimentally the conductive properties of single walled carbon nanotube (SWNT) based field-effect type devices, with different contact geometries at the connecting electrode. The device designs are asymmetric with one end of the SWNT having the metal electrode deposited on top and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-06, Vol.115 (21)
Main Authors: Yotprayoonsak, P., Talukdar, D., Ahlskog, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have studied experimentally the conductive properties of single walled carbon nanotube (SWNT) based field-effect type devices, with different contact geometries at the connecting electrode. The device designs are asymmetric with one end of the SWNT having the metal electrode deposited on top and immersing it, while at the other end, the SWNT is on top of the electrode. The devices were made with either gold or palladium as electrode materials, of which the latter resulted in different behavior of the different contact types. This is argued to be caused by the existence of a thin insulating layer of surface adsorbents on the palladium, possibly Pd5O4, the effect of which is enhanced by the 1D nature of the contact area in the configuration with SWNT on top of electrode.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4880955