Loading…

Voltage-induced buckling of dielectric films using fluid electrodes

Accurate and integrable control of different flows within microfluidic channels is crucial for further development of lab-on-a-chip and fully integrated adaptable structures. Here, we introduce a flexible microactuator that buckles at a high deformation rate and alters the downstream fluid flow. The...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-03, Vol.108 (11)
Main Authors: Tavakol, Behrouz, Holmes, Douglas P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate and integrable control of different flows within microfluidic channels is crucial for further development of lab-on-a-chip and fully integrated adaptable structures. Here, we introduce a flexible microactuator that buckles at a high deformation rate and alters the downstream fluid flow. The microactuator consists of a confined, thin, dielectric film that buckles into the microfluidic channel when exposed to voltage supplied through conductive fluid electrodes. We estimate the critical buckling voltage and characterize the buckled shape of the actuator. Finally, we investigate the effects of frequency, flow rate, and pressure differences on the behavior of the buckling structure and the resulting fluid flow. These results demonstrate that the voltage-induced buckling of embedded microstructures using fluid electrodes provides a means for high speed, repeatable attenuation of microfluidic flow.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4944331