Loading…

Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector

Reduced graphene oxide (RGO)/Si Schottky diode has been reported nowadays to show excellent performances in photodetection and other photoelectrical devices. Different from pure graphene, there are large amounts of function groups and structural defects left on the base plane of RGO, which may influ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-03, Vol.119 (12)
Main Authors: Zhu, Miao, Li, Xinming, Li, Xiao, Zang, Xiaobei, Zhen, Zhen, Xie, Dan, Fang, Ying, Zhu, Hongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reduced graphene oxide (RGO)/Si Schottky diode has been reported nowadays to show excellent performances in photodetection and other photoelectrical devices. Different from pure graphene, there are large amounts of function groups and structural defects left on the base plane of RGO, which may influence the interfacial properties of RGO/Si Schottky diode. Herein, the barrier inhomogeneity and junction characteristics were systematically investigated to help to describe the interface of RGO/Si diode. From the perspective of its applications, the influences of gas molecule and noise properties are considered to be important. Thus, the photovoltaic performance of RGO/Si devices in air and vacuum is investigated to analyze their effects. Meanwhile, 1/f noise of RGO/Si diodes is investigated under air/vacuum conditions and varied temperatures. It is found that the devices in vacuum and under higher power incident light show much lower 1/f noise. These results are meaningful to the noise control and performance improvement in the development of Schottky diode based devices.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4944945