Loading…

Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-05, Vol.119 (19)
Main Authors: Pacold, J. I., Lukens, W. W., Booth, C. H., Shuh, D. K., Knight, K. B., Eppich, G. R., Holliday, K. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-c5e8b44509af43c1dc43e026b8bffb3b7945d759f890bb5da6dcc44f23ee6a923
cites cdi_FETCH-LOGICAL-c389t-c5e8b44509af43c1dc43e026b8bffb3b7945d759f890bb5da6dcc44f23ee6a923
container_end_page
container_issue 19
container_start_page
container_title Journal of applied physics
container_volume 119
creator Pacold, J. I.
Lukens, W. W.
Booth, C. H.
Shuh, D. K.
Knight, K. B.
Eppich, G. R.
Holliday, K. S.
description Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.
doi_str_mv 10.1063/1.4948942
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4948942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121864574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c5e8b44509af43c1dc43e026b8bffb3b7945d759f890bb5da6dcc44f23ee6a923</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pwX8Q9KSsM0mTNjnKcCoM5sGdQ5omW0eb1KRT_Pd2duhB8PRdHr735QXgEqMpRll6h6dUUC4oOQIjjLhIcsbQMRghRHDCRS5OwVmMW4Qw5qkYgeVsY5pKqxrG1uhKdZV30Fu4msC5mUDlSviyg5WDjak7uK5VjNAG30C307VRAX4Y1XoXYWdiV7n1OTixqo7m4nDHYDV_eJ09JYvl4_PsfpHolIsu0czwglKGhLI01bjUNDWIZAUvrC3SIheUlTkTlgtUFKxUWak1pZakxmRKkHQMroa_vo-VUVed0RvtnTO6k5hkBPO8R9cDaoN_2_UF5dbvgut7SYJ7kVGW017dDEoHH2MwVrahalT4lBjJ_agSy8Oovb0d7D7xe6wf_O7DL5Rtaf_Dfz9_AW34g-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121864574</pqid></control><display><type>article</type><title>Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pacold, J. I. ; Lukens, W. W. ; Booth, C. H. ; Shuh, D. K. ; Knight, K. B. ; Eppich, G. R. ; Holliday, K. S.</creator><creatorcontrib>Pacold, J. I. ; Lukens, W. W. ; Booth, C. H. ; Shuh, D. K. ; Knight, K. B. ; Eppich, G. R. ; Holliday, K. S. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4948942</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actinides ; Applied physics ; Buffers (chemistry) ; Composition ; Detonation ; Dispersion ; ENVIRONMENTAL SCIENCES ; Glass ; Groundwater ; Nuclear tests ; Nuclear weapons ; Organic chemistry ; Oxidation ; Plutonium ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; Soil conditions ; Soil testing ; Speciation ; Valence</subject><ispartof>Journal of applied physics, 2016-05, Vol.119 (19)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c5e8b44509af43c1dc43e026b8bffb3b7945d759f890bb5da6dcc44f23ee6a923</citedby><cites>FETCH-LOGICAL-c389t-c5e8b44509af43c1dc43e026b8bffb3b7945d759f890bb5da6dcc44f23ee6a923</cites><orcidid>0000-0003-2136-3145 ; 0000-0002-4697-5896 ; 0000000321363145 ; 0000000246975896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1262187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pacold, J. I.</creatorcontrib><creatorcontrib>Lukens, W. W.</creatorcontrib><creatorcontrib>Booth, C. H.</creatorcontrib><creatorcontrib>Shuh, D. K.</creatorcontrib><creatorcontrib>Knight, K. B.</creatorcontrib><creatorcontrib>Eppich, G. R.</creatorcontrib><creatorcontrib>Holliday, K. S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing</title><title>Journal of applied physics</title><description>Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.</description><subject>Actinides</subject><subject>Applied physics</subject><subject>Buffers (chemistry)</subject><subject>Composition</subject><subject>Detonation</subject><subject>Dispersion</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Glass</subject><subject>Groundwater</subject><subject>Nuclear tests</subject><subject>Nuclear weapons</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Plutonium</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>Soil conditions</subject><subject>Soil testing</subject><subject>Speciation</subject><subject>Valence</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs7pwX8Q9KSsM0mTNjnKcCoM5sGdQ5omW0eb1KRT_Pd2duhB8PRdHr735QXgEqMpRll6h6dUUC4oOQIjjLhIcsbQMRghRHDCRS5OwVmMW4Qw5qkYgeVsY5pKqxrG1uhKdZV30Fu4msC5mUDlSviyg5WDjak7uK5VjNAG30C307VRAX4Y1XoXYWdiV7n1OTixqo7m4nDHYDV_eJ09JYvl4_PsfpHolIsu0czwglKGhLI01bjUNDWIZAUvrC3SIheUlTkTlgtUFKxUWak1pZakxmRKkHQMroa_vo-VUVed0RvtnTO6k5hkBPO8R9cDaoN_2_UF5dbvgut7SYJ7kVGW017dDEoHH2MwVrahalT4lBjJ_agSy8Oovb0d7D7xe6wf_O7DL5Rtaf_Dfz9_AW34g-s</recordid><startdate>20160521</startdate><enddate>20160521</enddate><creator>Pacold, J. I.</creator><creator>Lukens, W. W.</creator><creator>Booth, C. H.</creator><creator>Shuh, D. K.</creator><creator>Knight, K. B.</creator><creator>Eppich, G. R.</creator><creator>Holliday, K. S.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2136-3145</orcidid><orcidid>https://orcid.org/0000-0002-4697-5896</orcidid><orcidid>https://orcid.org/0000000321363145</orcidid><orcidid>https://orcid.org/0000000246975896</orcidid></search><sort><creationdate>20160521</creationdate><title>Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing</title><author>Pacold, J. I. ; Lukens, W. W. ; Booth, C. H. ; Shuh, D. K. ; Knight, K. B. ; Eppich, G. R. ; Holliday, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c5e8b44509af43c1dc43e026b8bffb3b7945d759f890bb5da6dcc44f23ee6a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actinides</topic><topic>Applied physics</topic><topic>Buffers (chemistry)</topic><topic>Composition</topic><topic>Detonation</topic><topic>Dispersion</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Glass</topic><topic>Groundwater</topic><topic>Nuclear tests</topic><topic>Nuclear weapons</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Plutonium</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>Soil conditions</topic><topic>Soil testing</topic><topic>Speciation</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacold, J. I.</creatorcontrib><creatorcontrib>Lukens, W. W.</creatorcontrib><creatorcontrib>Booth, C. H.</creatorcontrib><creatorcontrib>Shuh, D. K.</creatorcontrib><creatorcontrib>Knight, K. B.</creatorcontrib><creatorcontrib>Eppich, G. R.</creatorcontrib><creatorcontrib>Holliday, K. S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pacold, J. I.</au><au>Lukens, W. W.</au><au>Booth, C. H.</au><au>Shuh, D. K.</au><au>Knight, K. B.</au><au>Eppich, G. R.</au><au>Holliday, K. S.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing</atitle><jtitle>Journal of applied physics</jtitle><date>2016-05-21</date><risdate>2016</risdate><volume>119</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4948942</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2136-3145</orcidid><orcidid>https://orcid.org/0000-0002-4697-5896</orcidid><orcidid>https://orcid.org/0000000321363145</orcidid><orcidid>https://orcid.org/0000000246975896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-05, Vol.119 (19)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_4948942
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Actinides
Applied physics
Buffers (chemistry)
Composition
Detonation
Dispersion
ENVIRONMENTAL SCIENCES
Glass
Groundwater
Nuclear tests
Nuclear weapons
Organic chemistry
Oxidation
Plutonium
RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY
Soil conditions
Soil testing
Speciation
Valence
title Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20speciation%20of%20U,%20Fe,%20and%20Pu%20in%20melt%20glass%20from%20nuclear%20weapons%20testing&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Pacold,%20J.%20I.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2016-05-21&rft.volume=119&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4948942&rft_dat=%3Cproquest_cross%3E2121864574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-c5e8b44509af43c1dc43e026b8bffb3b7945d759f890bb5da6dcc44f23ee6a923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121864574&rft_id=info:pmid/&rfr_iscdi=true