Loading…
Near interface traps in SiO2/4H-SiC metal-oxide-semiconductor field effect transistors monitored by temperature dependent gate current transient measurements
This letter reports on the impact of gate oxide trapping states on the conduction mechanisms in SiO2/4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs). The phenomena were studied by gate current transient measurements, performed on n-channel MOSFETs operated in “gate-controlled-dio...
Saved in:
Published in: | Applied physics letters 2016-07, Vol.109 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This letter reports on the impact of gate oxide trapping states on the conduction mechanisms in SiO2/4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs). The phenomena were studied by gate current transient measurements, performed on n-channel MOSFETs operated in “gate-controlled-diode” configuration. The measurements revealed an anomalous non-steady conduction under negative bias (VG > |20 V|) through the SiO2/4H-SiC interface. The phenomenon was explained by the coexistence of a electron variable range hopping and a hole Fowler-Nordheim (FN) tunnelling. A semi-empirical modified FN model with a time-depended electric field is used to estimate the near interface traps in the gate oxide (Ntrap
∼ 2 × 1011 cm−2). |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4955465 |