Loading…

Machine learning scheme for fast extraction of chemically interpretable interatomic potentials

We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich inf...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2016-08, Vol.6 (8), p.085318-085318-13
Main Authors: Dolgirev, Pavel E., Kruglov, Ivan A., Oganov, Artem R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3
cites cdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3
container_end_page 085318-13
container_issue 8
container_start_page 085318
container_title AIP advances
container_volume 6
creator Dolgirev, Pavel E.
Kruglov, Ivan A.
Oganov, Artem R.
description We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.
doi_str_mv 10.1063/1.4961886
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4961886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_887f07782a784cf3a2c9279793dc35a2</doaj_id><sourcerecordid>2121693505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</originalsourceid><addsrcrecordid>eNqdkU1PGzEQhi1UJKLAgX9giROVQv21tvdYRS0gBfUCV6yJdwyONuutbary79mwqO25c5mvR--MZgg55-yKMy2_8CvVam6tPiILwRu7kkLoT__EJ-SslB2bTLWcWbUgj3fgn-OAtEfIQxyeaPHPuEcaUqYBSqX4u2bwNaaBpkAPzeih719pHCrmMWOFbY9zBjVNXTqmikON0JdTchwmh2cffkkevn-7X9-sNj-ub9dfNyuvhK2rRqNmnjXSMoRWKwYouem2QXnDldTGCh-stlYYbw0XzDZdsEIJplvUW5RLcjvrdgl2bsxxD_nVJYjuvZDyk4Nco-_RWWsCM5MiGKt8kCB8K0xrWtl52YCYtC5mrTGnny9YqtullzxM6zvBBdetbKZNl-RypnxOpWQMf6Zy5g7fcNx9fGNiP89s8bHC4ZT_B_9K-S_oxi7IN8mmlzM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121693505</pqid></control><display><type>article</type><title>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Dolgirev, Pavel E. ; Kruglov, Ivan A. ; Oganov, Artem R.</creator><creatorcontrib>Dolgirev, Pavel E. ; Kruglov, Ivan A. ; Oganov, Artem R.</creatorcontrib><description>We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4961886</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Computer simulation ; Crystal structure ; Machine learning ; Molecular dynamics ; Molecular structure ; Neural networks ; Organic chemistry ; Reconstruction ; Simulation</subject><ispartof>AIP advances, 2016-08, Vol.6 (8), p.085318-085318-13</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</citedby><cites>FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</cites><orcidid>0000-0003-0352-7302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.4961886$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Dolgirev, Pavel E.</creatorcontrib><creatorcontrib>Kruglov, Ivan A.</creatorcontrib><creatorcontrib>Oganov, Artem R.</creatorcontrib><title>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</title><title>AIP advances</title><description>We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.</description><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Reconstruction</subject><subject>Simulation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkU1PGzEQhi1UJKLAgX9giROVQv21tvdYRS0gBfUCV6yJdwyONuutbary79mwqO25c5mvR--MZgg55-yKMy2_8CvVam6tPiILwRu7kkLoT__EJ-SslB2bTLWcWbUgj3fgn-OAtEfIQxyeaPHPuEcaUqYBSqX4u2bwNaaBpkAPzeih719pHCrmMWOFbY9zBjVNXTqmikON0JdTchwmh2cffkkevn-7X9-sNj-ub9dfNyuvhK2rRqNmnjXSMoRWKwYouem2QXnDldTGCh-stlYYbw0XzDZdsEIJplvUW5RLcjvrdgl2bsxxD_nVJYjuvZDyk4Nco-_RWWsCM5MiGKt8kCB8K0xrWtl52YCYtC5mrTGnny9YqtullzxM6zvBBdetbKZNl-RypnxOpWQMf6Zy5g7fcNx9fGNiP89s8bHC4ZT_B_9K-S_oxi7IN8mmlzM</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Dolgirev, Pavel E.</creator><creator>Kruglov, Ivan A.</creator><creator>Oganov, Artem R.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0352-7302</orcidid></search><sort><creationdate>201608</creationdate><title>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</title><author>Dolgirev, Pavel E. ; Kruglov, Ivan A. ; Oganov, Artem R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Reconstruction</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgirev, Pavel E.</creatorcontrib><creatorcontrib>Kruglov, Ivan A.</creatorcontrib><creatorcontrib>Oganov, Artem R.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgirev, Pavel E.</au><au>Kruglov, Ivan A.</au><au>Oganov, Artem R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</atitle><jtitle>AIP advances</jtitle><date>2016-08</date><risdate>2016</risdate><volume>6</volume><issue>8</issue><spage>085318</spage><epage>085318-13</epage><pages>085318-085318-13</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4961886</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0352-7302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2016-08, Vol.6 (8), p.085318-085318-13
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_4961886
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Artificial neural networks
Computer simulation
Crystal structure
Machine learning
Molecular dynamics
Molecular structure
Neural networks
Organic chemistry
Reconstruction
Simulation
title Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20scheme%20for%20fast%20extraction%20of%20chemically%20interpretable%20interatomic%20potentials&rft.jtitle=AIP%20advances&rft.au=Dolgirev,%20Pavel%20E.&rft.date=2016-08&rft.volume=6&rft.issue=8&rft.spage=085318&rft.epage=085318-13&rft.pages=085318-085318-13&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4961886&rft_dat=%3Cproquest_cross%3E2121693505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121693505&rft_id=info:pmid/&rfr_iscdi=true