Loading…
Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich inf...
Saved in:
Published in: | AIP advances 2016-08, Vol.6 (8), p.085318-085318-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3 |
container_end_page | 085318-13 |
container_issue | 8 |
container_start_page | 085318 |
container_title | AIP advances |
container_volume | 6 |
creator | Dolgirev, Pavel E. Kruglov, Ivan A. Oganov, Artem R. |
description | We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method. |
doi_str_mv | 10.1063/1.4961886 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4961886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_887f07782a784cf3a2c9279793dc35a2</doaj_id><sourcerecordid>2121693505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</originalsourceid><addsrcrecordid>eNqdkU1PGzEQhi1UJKLAgX9giROVQv21tvdYRS0gBfUCV6yJdwyONuutbary79mwqO25c5mvR--MZgg55-yKMy2_8CvVam6tPiILwRu7kkLoT__EJ-SslB2bTLWcWbUgj3fgn-OAtEfIQxyeaPHPuEcaUqYBSqX4u2bwNaaBpkAPzeih719pHCrmMWOFbY9zBjVNXTqmikON0JdTchwmh2cffkkevn-7X9-sNj-ub9dfNyuvhK2rRqNmnjXSMoRWKwYouem2QXnDldTGCh-stlYYbw0XzDZdsEIJplvUW5RLcjvrdgl2bsxxD_nVJYjuvZDyk4Nco-_RWWsCM5MiGKt8kCB8K0xrWtl52YCYtC5mrTGnny9YqtullzxM6zvBBdetbKZNl-RypnxOpWQMf6Zy5g7fcNx9fGNiP89s8bHC4ZT_B_9K-S_oxi7IN8mmlzM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121693505</pqid></control><display><type>article</type><title>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Dolgirev, Pavel E. ; Kruglov, Ivan A. ; Oganov, Artem R.</creator><creatorcontrib>Dolgirev, Pavel E. ; Kruglov, Ivan A. ; Oganov, Artem R.</creatorcontrib><description>We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4961886</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Computer simulation ; Crystal structure ; Machine learning ; Molecular dynamics ; Molecular structure ; Neural networks ; Organic chemistry ; Reconstruction ; Simulation</subject><ispartof>AIP advances, 2016-08, Vol.6 (8), p.085318-085318-13</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</citedby><cites>FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</cites><orcidid>0000-0003-0352-7302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.4961886$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Dolgirev, Pavel E.</creatorcontrib><creatorcontrib>Kruglov, Ivan A.</creatorcontrib><creatorcontrib>Oganov, Artem R.</creatorcontrib><title>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</title><title>AIP advances</title><description>We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.</description><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Reconstruction</subject><subject>Simulation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkU1PGzEQhi1UJKLAgX9giROVQv21tvdYRS0gBfUCV6yJdwyONuutbary79mwqO25c5mvR--MZgg55-yKMy2_8CvVam6tPiILwRu7kkLoT__EJ-SslB2bTLWcWbUgj3fgn-OAtEfIQxyeaPHPuEcaUqYBSqX4u2bwNaaBpkAPzeih719pHCrmMWOFbY9zBjVNXTqmikON0JdTchwmh2cffkkevn-7X9-sNj-ub9dfNyuvhK2rRqNmnjXSMoRWKwYouem2QXnDldTGCh-stlYYbw0XzDZdsEIJplvUW5RLcjvrdgl2bsxxD_nVJYjuvZDyk4Nco-_RWWsCM5MiGKt8kCB8K0xrWtl52YCYtC5mrTGnny9YqtullzxM6zvBBdetbKZNl-RypnxOpWQMf6Zy5g7fcNx9fGNiP89s8bHC4ZT_B_9K-S_oxi7IN8mmlzM</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Dolgirev, Pavel E.</creator><creator>Kruglov, Ivan A.</creator><creator>Oganov, Artem R.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0352-7302</orcidid></search><sort><creationdate>201608</creationdate><title>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</title><author>Dolgirev, Pavel E. ; Kruglov, Ivan A. ; Oganov, Artem R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Reconstruction</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgirev, Pavel E.</creatorcontrib><creatorcontrib>Kruglov, Ivan A.</creatorcontrib><creatorcontrib>Oganov, Artem R.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgirev, Pavel E.</au><au>Kruglov, Ivan A.</au><au>Oganov, Artem R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning scheme for fast extraction of chemically interpretable interatomic potentials</atitle><jtitle>AIP advances</jtitle><date>2016-08</date><risdate>2016</risdate><volume>6</volume><issue>8</issue><spage>085318</spage><epage>085318-13</epage><pages>085318-085318-13</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4961886</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0352-7302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2016-08, Vol.6 (8), p.085318-085318-13 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4961886 |
source | AIP Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Artificial neural networks Computer simulation Crystal structure Machine learning Molecular dynamics Molecular structure Neural networks Organic chemistry Reconstruction Simulation |
title | Machine learning scheme for fast extraction of chemically interpretable interatomic potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20scheme%20for%20fast%20extraction%20of%20chemically%20interpretable%20interatomic%20potentials&rft.jtitle=AIP%20advances&rft.au=Dolgirev,%20Pavel%20E.&rft.date=2016-08&rft.volume=6&rft.issue=8&rft.spage=085318&rft.epage=085318-13&rft.pages=085318-085318-13&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4961886&rft_dat=%3Cproquest_cross%3E2121693505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-56e60c05380ea9640ae317dbf4c71436782cf868827c8712085df8242069e6be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121693505&rft_id=info:pmid/&rfr_iscdi=true |