Loading…
Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems
The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separ...
Saved in:
Published in: | Journal of applied physics 2016-09, Vol.120 (12) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 120 |
creator | Mińkowski, Marcin Załuska-Kotur, Magdalena A. Turski, Łukasz A. Karczewski, Grzegorz |
description | The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures. |
doi_str_mv | 10.1063/1.4962974 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4962974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121640625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</originalsourceid><addsrcrecordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQLf-aNEcpToWJHuZRQtqkmtE2NcmEfXurHXj39B7eH8_L-wBwidECI06XeMEkJ1KwIzDDqJCZyHN0DGYIEZwVUshTcBbjFiGMCypn4O3J98nCUofWw-i6XauT832EvoGdD8OHb_27q3ULU9B9dNPS9fCl2thlaTYWuq5zsXZVa2Gnkw1uxHEfk-3iOThpdBvtxWHOwevqblM-ZOvn-8fydp3VlIiUySKnhGlGC0J1U0iuORdU47wWxBKra2YqizVlpDHIYNIQUknDRKWpMbSidA6uptwh-M-djUlt_S7040lFMMGcIU7yUV1Pqg4-xmAbNQTX6bBXGKmf9hRWh_ZGezPZ8bP0W8n_8JcPf1ANpqHfdVN-jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121640625</pqid></control><display><type>article</type><title>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A. ; Turski, Łukasz A. ; Karczewski, Grzegorz</creator><creatorcontrib>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A. ; Turski, Łukasz A. ; Karczewski, Grzegorz</creatorcontrib><description>The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4962974</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Computer simulation ; Crystal growth ; Diffusion ; Intermetallic compounds ; Lead tellurides ; Miscibility ; Monte Carlo simulation ; Morphology ; Multilayers ; Nanowires ; Phase separation ; Quantum dots ; Surface diffusion</subject><ispartof>Journal of applied physics, 2016-09, Vol.120 (12)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</citedby><cites>FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</cites><orcidid>0000-0003-3441-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena A.</creatorcontrib><creatorcontrib>Turski, Łukasz A.</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><title>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</title><title>Journal of applied physics</title><description>The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Crystal growth</subject><subject>Diffusion</subject><subject>Intermetallic compounds</subject><subject>Lead tellurides</subject><subject>Miscibility</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Phase separation</subject><subject>Quantum dots</subject><subject>Surface diffusion</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQLf-aNEcpToWJHuZRQtqkmtE2NcmEfXurHXj39B7eH8_L-wBwidECI06XeMEkJ1KwIzDDqJCZyHN0DGYIEZwVUshTcBbjFiGMCypn4O3J98nCUofWw-i6XauT832EvoGdD8OHb_27q3ULU9B9dNPS9fCl2thlaTYWuq5zsXZVa2Gnkw1uxHEfk-3iOThpdBvtxWHOwevqblM-ZOvn-8fydp3VlIiUySKnhGlGC0J1U0iuORdU47wWxBKra2YqizVlpDHIYNIQUknDRKWpMbSidA6uptwh-M-djUlt_S7040lFMMGcIU7yUV1Pqg4-xmAbNQTX6bBXGKmf9hRWh_ZGezPZ8bP0W8n_8JcPf1ANpqHfdVN-jw</recordid><startdate>20160928</startdate><enddate>20160928</enddate><creator>Mińkowski, Marcin</creator><creator>Załuska-Kotur, Magdalena A.</creator><creator>Turski, Łukasz A.</creator><creator>Karczewski, Grzegorz</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3441-1425</orcidid></search><sort><creationdate>20160928</creationdate><title>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</title><author>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A. ; Turski, Łukasz A. ; Karczewski, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Crystal growth</topic><topic>Diffusion</topic><topic>Intermetallic compounds</topic><topic>Lead tellurides</topic><topic>Miscibility</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Phase separation</topic><topic>Quantum dots</topic><topic>Surface diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena A.</creatorcontrib><creatorcontrib>Turski, Łukasz A.</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mińkowski, Marcin</au><au>Załuska-Kotur, Magdalena A.</au><au>Turski, Łukasz A.</au><au>Karczewski, Grzegorz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</atitle><jtitle>Journal of applied physics</jtitle><date>2016-09-28</date><risdate>2016</risdate><volume>120</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4962974</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3441-1425</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-09, Vol.120 (12) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4962974 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Anisotropy Applied physics Computer simulation Crystal growth Diffusion Intermetallic compounds Lead tellurides Miscibility Monte Carlo simulation Morphology Multilayers Nanowires Phase separation Quantum dots Surface diffusion |
title | Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulations%20of%20morphological%20transitions%20in%20PbTe/CdTe%20immiscible%20material%20systems&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mi%C5%84kowski,%20Marcin&rft.date=2016-09-28&rft.volume=120&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4962974&rft_dat=%3Cproquest_cross%3E2121640625%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121640625&rft_id=info:pmid/&rfr_iscdi=true |