Loading…

Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems

The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-09, Vol.120 (12)
Main Authors: Mińkowski, Marcin, Załuska-Kotur, Magdalena A., Turski, Łukasz A., Karczewski, Grzegorz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33
cites cdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33
container_end_page
container_issue 12
container_start_page
container_title Journal of applied physics
container_volume 120
creator Mińkowski, Marcin
Załuska-Kotur, Magdalena A.
Turski, Łukasz A.
Karczewski, Grzegorz
description The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures.
doi_str_mv 10.1063/1.4962974
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4962974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121640625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</originalsourceid><addsrcrecordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQLf-aNEcpToWJHuZRQtqkmtE2NcmEfXurHXj39B7eH8_L-wBwidECI06XeMEkJ1KwIzDDqJCZyHN0DGYIEZwVUshTcBbjFiGMCypn4O3J98nCUofWw-i6XauT832EvoGdD8OHb_27q3ULU9B9dNPS9fCl2thlaTYWuq5zsXZVa2Gnkw1uxHEfk-3iOThpdBvtxWHOwevqblM-ZOvn-8fydp3VlIiUySKnhGlGC0J1U0iuORdU47wWxBKra2YqizVlpDHIYNIQUknDRKWpMbSidA6uptwh-M-djUlt_S7040lFMMGcIU7yUV1Pqg4-xmAbNQTX6bBXGKmf9hRWh_ZGezPZ8bP0W8n_8JcPf1ANpqHfdVN-jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121640625</pqid></control><display><type>article</type><title>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A. ; Turski, Łukasz A. ; Karczewski, Grzegorz</creator><creatorcontrib>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A. ; Turski, Łukasz A. ; Karczewski, Grzegorz</creatorcontrib><description>The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4962974</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Computer simulation ; Crystal growth ; Diffusion ; Intermetallic compounds ; Lead tellurides ; Miscibility ; Monte Carlo simulation ; Morphology ; Multilayers ; Nanowires ; Phase separation ; Quantum dots ; Surface diffusion</subject><ispartof>Journal of applied physics, 2016-09, Vol.120 (12)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</citedby><cites>FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</cites><orcidid>0000-0003-3441-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena A.</creatorcontrib><creatorcontrib>Turski, Łukasz A.</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><title>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</title><title>Journal of applied physics</title><description>The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Crystal growth</subject><subject>Diffusion</subject><subject>Intermetallic compounds</subject><subject>Lead tellurides</subject><subject>Miscibility</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Phase separation</subject><subject>Quantum dots</subject><subject>Surface diffusion</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0E9LwzAYBvAgCs7pwW8Q8KTQLf-aNEcpToWJHuZRQtqkmtE2NcmEfXurHXj39B7eH8_L-wBwidECI06XeMEkJ1KwIzDDqJCZyHN0DGYIEZwVUshTcBbjFiGMCypn4O3J98nCUofWw-i6XauT832EvoGdD8OHb_27q3ULU9B9dNPS9fCl2thlaTYWuq5zsXZVa2Gnkw1uxHEfk-3iOThpdBvtxWHOwevqblM-ZOvn-8fydp3VlIiUySKnhGlGC0J1U0iuORdU47wWxBKra2YqizVlpDHIYNIQUknDRKWpMbSidA6uptwh-M-djUlt_S7040lFMMGcIU7yUV1Pqg4-xmAbNQTX6bBXGKmf9hRWh_ZGezPZ8bP0W8n_8JcPf1ANpqHfdVN-jw</recordid><startdate>20160928</startdate><enddate>20160928</enddate><creator>Mińkowski, Marcin</creator><creator>Załuska-Kotur, Magdalena A.</creator><creator>Turski, Łukasz A.</creator><creator>Karczewski, Grzegorz</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3441-1425</orcidid></search><sort><creationdate>20160928</creationdate><title>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</title><author>Mińkowski, Marcin ; Załuska-Kotur, Magdalena A. ; Turski, Łukasz A. ; Karczewski, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Crystal growth</topic><topic>Diffusion</topic><topic>Intermetallic compounds</topic><topic>Lead tellurides</topic><topic>Miscibility</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Phase separation</topic><topic>Quantum dots</topic><topic>Surface diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska-Kotur, Magdalena A.</creatorcontrib><creatorcontrib>Turski, Łukasz A.</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mińkowski, Marcin</au><au>Załuska-Kotur, Magdalena A.</au><au>Turski, Łukasz A.</au><au>Karczewski, Grzegorz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems</atitle><jtitle>Journal of applied physics</jtitle><date>2016-09-28</date><risdate>2016</risdate><volume>120</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The crystal growth of the immiscible PbTe/CdTe multilayer system is analyzed as an example of a self-organizing process. The immiscibility of the constituents leads to the observed morphological transformations such as an anisotropy driven formation of quantum dots and nanowires and to a phase separation at the highest temperatures. The proposed model accomplishes a bulk and surface diffusion together with an anisotropic mobility of the material components. We analyze its properties by kinetic Monte Carlo simulations and show that it is able to reproduce all of the structures observed experimentally during the process of the PbTe/CdTe growth. We show that all of the dynamical processes studied play an important role in the creation of zero-, one-, two-, and, finally, three-dimensional structures. The shape of the structures that are grown is different for relatively thick multilayers, when the bulk diffusion cooperates with the anisotropic mobility, as compared to the annealed structures for which only the isotropic bulk diffusion decides about the process. Finally, it is different again for thin multilayers when the surface diffusion is the most decisive factor. We compare our results with the experimentally grown systems and show that the proposed model explains the diversity of observed structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4962974</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3441-1425</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-09, Vol.120 (12)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_4962974
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Anisotropy
Applied physics
Computer simulation
Crystal growth
Diffusion
Intermetallic compounds
Lead tellurides
Miscibility
Monte Carlo simulation
Morphology
Multilayers
Nanowires
Phase separation
Quantum dots
Surface diffusion
title Monte Carlo simulations of morphological transitions in PbTe/CdTe immiscible material systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulations%20of%20morphological%20transitions%20in%20PbTe/CdTe%20immiscible%20material%20systems&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mi%C5%84kowski,%20Marcin&rft.date=2016-09-28&rft.volume=120&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4962974&rft_dat=%3Cproquest_cross%3E2121640625%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-985324a43823af896a6673a15c72e2eac4dbe1a342fd0d12f22b9d47ba3dd3b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121640625&rft_id=info:pmid/&rfr_iscdi=true