Loading…

Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy

Photocurrent excitation spectroscopy has been employed to probe the band structure and basic parameters of hexagonal boron nitride (h-BN) epilayers synthesized by metal-organic chemical vapor deposition. Bias dependent photocurrent excitation spectra clearly resolved the band-to-band, free exciton,...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-09, Vol.109 (12)
Main Authors: Doan, T. C., Li, J., Lin, J. Y., Jiang, H. X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-b60d979bcb4cf9d160892fe2cea555980a1f6f1d5d04c8bdcedd27319073a3793
cites cdi_FETCH-LOGICAL-c393t-b60d979bcb4cf9d160892fe2cea555980a1f6f1d5d04c8bdcedd27319073a3793
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 109
creator Doan, T. C.
Li, J.
Lin, J. Y.
Jiang, H. X.
description Photocurrent excitation spectroscopy has been employed to probe the band structure and basic parameters of hexagonal boron nitride (h-BN) epilayers synthesized by metal-organic chemical vapor deposition. Bias dependent photocurrent excitation spectra clearly resolved the band-to-band, free exciton, and impurity bound exciton transitions. The energy bandgap (Eg), binding energy of free exciton (Ex), and binding energy of impurity bound exciton (Ebx) in h-BN have been directly obtained from the photocurrent spectral peak positions and comparison with the related photoluminescence emission peaks. The direct observation of the band-to-band transition suggests that h-BN is a semiconductor with a direct energy bandgap of Eg = 6.42 eV at room temperature. These results provide a more coherent picture regarding the fundamental parameters of this important emerging ultra-wide bandgap semiconductor.
doi_str_mv 10.1063/1.4963128
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4963128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121641105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-b60d979bcb4cf9d160892fe2cea555980a1f6f1d5d04c8bdcedd27319073a3793</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIuFKYmjOZW5ZavEHBja5DJpdpSk3GJJX27Y204t7V4cDHz38OQpdAZkAaeguzijUUyu4ITYC0bUEBumM0IYTQomE1nKKzGFd5rUtKJ8jdC6cGMeI8sN5Km7zDvXXKugFrp8NgdcTe4KXeisE7sca9D9k4m4JVGo_B91rhfofHpU9ebkLQLu2jRLJZxlHLFHyUftydoxMj1lFfHOYUvT8-vM2fi8Xr08v8blFIymgq-oYo1rJe9pU0TEFDOlYaXUot6rpmHRFgGgOqVqSSXa-kVqpsKTDSUkFbRqfoap-b631udEx85Tcht4-8hBKaCoDUWV3vlcz1YtCGj8F-iLDjQPjPOznwwzuzvdnb-HvY__CXD3-Qj8rQb1EthZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121641105</pqid></control><display><type>article</type><title>Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Doan, T. C. ; Li, J. ; Lin, J. Y. ; Jiang, H. X.</creator><creatorcontrib>Doan, T. C. ; Li, J. ; Lin, J. Y. ; Jiang, H. X.</creatorcontrib><description>Photocurrent excitation spectroscopy has been employed to probe the band structure and basic parameters of hexagonal boron nitride (h-BN) epilayers synthesized by metal-organic chemical vapor deposition. Bias dependent photocurrent excitation spectra clearly resolved the band-to-band, free exciton, and impurity bound exciton transitions. The energy bandgap (Eg), binding energy of free exciton (Ex), and binding energy of impurity bound exciton (Ebx) in h-BN have been directly obtained from the photocurrent spectral peak positions and comparison with the related photoluminescence emission peaks. The direct observation of the band-to-band transition suggests that h-BN is a semiconductor with a direct energy bandgap of Eg = 6.42 eV at room temperature. These results provide a more coherent picture regarding the fundamental parameters of this important emerging ultra-wide bandgap semiconductor.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4963128</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Binding energy ; Boron nitride ; Chemical synthesis ; Excitation spectra ; Excitons ; Impurities ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Parameters ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Spectroscopy ; Spectrum analysis ; Ultrawideband ; Wide bandgap semiconductors</subject><ispartof>Applied physics letters, 2016-09, Vol.109 (12)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-b60d979bcb4cf9d160892fe2cea555980a1f6f1d5d04c8bdcedd27319073a3793</citedby><cites>FETCH-LOGICAL-c393t-b60d979bcb4cf9d160892fe2cea555980a1f6f1d5d04c8bdcedd27319073a3793</cites><orcidid>0000-0001-9892-4292 ; 0000-0003-1705-2635 ; 0000-0003-2880-7933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4963128$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27922,27923,76153</link.rule.ids></links><search><creatorcontrib>Doan, T. C.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Lin, J. Y.</creatorcontrib><creatorcontrib>Jiang, H. X.</creatorcontrib><title>Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy</title><title>Applied physics letters</title><description>Photocurrent excitation spectroscopy has been employed to probe the band structure and basic parameters of hexagonal boron nitride (h-BN) epilayers synthesized by metal-organic chemical vapor deposition. Bias dependent photocurrent excitation spectra clearly resolved the band-to-band, free exciton, and impurity bound exciton transitions. The energy bandgap (Eg), binding energy of free exciton (Ex), and binding energy of impurity bound exciton (Ebx) in h-BN have been directly obtained from the photocurrent spectral peak positions and comparison with the related photoluminescence emission peaks. The direct observation of the band-to-band transition suggests that h-BN is a semiconductor with a direct energy bandgap of Eg = 6.42 eV at room temperature. These results provide a more coherent picture regarding the fundamental parameters of this important emerging ultra-wide bandgap semiconductor.</description><subject>Applied physics</subject><subject>Binding energy</subject><subject>Boron nitride</subject><subject>Chemical synthesis</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Impurities</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Ultrawideband</subject><subject>Wide bandgap semiconductors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIuFKYmjOZW5ZavEHBja5DJpdpSk3GJJX27Y204t7V4cDHz38OQpdAZkAaeguzijUUyu4ITYC0bUEBumM0IYTQomE1nKKzGFd5rUtKJ8jdC6cGMeI8sN5Km7zDvXXKugFrp8NgdcTe4KXeisE7sca9D9k4m4JVGo_B91rhfofHpU9ebkLQLu2jRLJZxlHLFHyUftydoxMj1lFfHOYUvT8-vM2fi8Xr08v8blFIymgq-oYo1rJe9pU0TEFDOlYaXUot6rpmHRFgGgOqVqSSXa-kVqpsKTDSUkFbRqfoap-b631udEx85Tcht4-8hBKaCoDUWV3vlcz1YtCGj8F-iLDjQPjPOznwwzuzvdnb-HvY__CXD3-Qj8rQb1EthZg</recordid><startdate>20160919</startdate><enddate>20160919</enddate><creator>Doan, T. C.</creator><creator>Li, J.</creator><creator>Lin, J. Y.</creator><creator>Jiang, H. X.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9892-4292</orcidid><orcidid>https://orcid.org/0000-0003-1705-2635</orcidid><orcidid>https://orcid.org/0000-0003-2880-7933</orcidid></search><sort><creationdate>20160919</creationdate><title>Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy</title><author>Doan, T. C. ; Li, J. ; Lin, J. Y. ; Jiang, H. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-b60d979bcb4cf9d160892fe2cea555980a1f6f1d5d04c8bdcedd27319073a3793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Binding energy</topic><topic>Boron nitride</topic><topic>Chemical synthesis</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Impurities</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Ultrawideband</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, T. C.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Lin, J. Y.</creatorcontrib><creatorcontrib>Jiang, H. X.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, T. C.</au><au>Li, J.</au><au>Lin, J. Y.</au><au>Jiang, H. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy</atitle><jtitle>Applied physics letters</jtitle><date>2016-09-19</date><risdate>2016</risdate><volume>109</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Photocurrent excitation spectroscopy has been employed to probe the band structure and basic parameters of hexagonal boron nitride (h-BN) epilayers synthesized by metal-organic chemical vapor deposition. Bias dependent photocurrent excitation spectra clearly resolved the band-to-band, free exciton, and impurity bound exciton transitions. The energy bandgap (Eg), binding energy of free exciton (Ex), and binding energy of impurity bound exciton (Ebx) in h-BN have been directly obtained from the photocurrent spectral peak positions and comparison with the related photoluminescence emission peaks. The direct observation of the band-to-band transition suggests that h-BN is a semiconductor with a direct energy bandgap of Eg = 6.42 eV at room temperature. These results provide a more coherent picture regarding the fundamental parameters of this important emerging ultra-wide bandgap semiconductor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4963128</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9892-4292</orcidid><orcidid>https://orcid.org/0000-0003-1705-2635</orcidid><orcidid>https://orcid.org/0000-0003-2880-7933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-09, Vol.109 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_4963128
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
Binding energy
Boron nitride
Chemical synthesis
Excitation spectra
Excitons
Impurities
Metalorganic chemical vapor deposition
Organic chemicals
Organic chemistry
Parameters
Photoelectric effect
Photoelectric emission
Photoluminescence
Spectroscopy
Spectrum analysis
Ultrawideband
Wide bandgap semiconductors
title Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20and%20exciton%20binding%20energies%20of%20hexagonal%20boron%20nitride%20probed%20by%20photocurrent%20excitation%20spectroscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Doan,%20T.%20C.&rft.date=2016-09-19&rft.volume=109&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4963128&rft_dat=%3Cproquest_cross%3E2121641105%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-b60d979bcb4cf9d160892fe2cea555980a1f6f1d5d04c8bdcedd27319073a3793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121641105&rft_id=info:pmid/&rfr_iscdi=true