Loading…
Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence
The birefringence splitting in vertical-cavity surface-emitting lasers offers an opportunity for spintronic-based high-frequency operation. By means of coupling of the carrier spin in the active region with the photons of the laser mode, the device can be excited to oscillations in the degree of cir...
Saved in:
Published in: | Applied physics letters 2017-04, Vol.110 (15) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The birefringence splitting in vertical-cavity surface-emitting lasers offers an opportunity for spintronic-based high-frequency operation. By means of coupling of the carrier spin in the active region with the photons of the laser mode, the device can be excited to oscillations in the degree of circular polarization with a frequency corresponding to the birefringence splitting. On-chip frequency tunability of those oscillations is desirable for future applications. By asymmetric current-induced heating using the elasto-optic effect, we demonstrate a reversible tuning of the birefringence splitting of 45 GHz with less than 3 dB output power penalty. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4980025 |