Loading…

On the propagation of particulate gravity currents in circular and semi-circular channels partially filled with homogeneous or stratified ambient fluid

We present a combined theoretical-experimental investigation of particle-driven gravity currents advancing in circular cross section channels in the high-Reynolds number Boussinesq regime; the ambient fluid is either homogeneous or linearly stratified. The predictions of the theoretical model are co...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2017-10, Vol.29 (10)
Main Authors: Zemach, T., Chiapponi, L., Petrolo, D., Ungarish, M., Longo, S., Di Federico, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a combined theoretical-experimental investigation of particle-driven gravity currents advancing in circular cross section channels in the high-Reynolds number Boussinesq regime; the ambient fluid is either homogeneous or linearly stratified. The predictions of the theoretical model are compared with experiments performed in lock–release configuration; experiments were performed with conditions of both full-depth and partial-depth locks. Two different particles were used for the turbidity current, and the full range 0 ≤ S ≤ 1 of the stratification parameter was explored (S = 0 corresponds to the homogeneous case and S = 1 when the density of the ambient fluid and of the current are equal at the bottom). In addition, a few saline gravity currents were tested for comparison. The results show good agreement for the full-depth configuration, with the initial depth of the current in the lock being equal to the depth of the ambient fluid. The agreement is less good for the partial-depth cases and is improved by the introduction of a simple adjustment coefficient for the Froude number at the front of the current and accounting for dissipation. The general parameter dependencies and behaviour of the current, although influenced by many factors (e.g., mixing and internal waves), are well predicted by the relatively simple model.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.4995388