Loading…

Dimension reduction techniques for the minimization of theta functions on lattices

We consider the minimization of theta functions Λ ( α ) = ∑ p ∈ Λ e − π α | p | 2 amongst periodic configurations Λ ⊂ R d , by reducing the dimension of the problem, following as a motivation the case d = 3, where minimizers are supposed to be either the body-centered cubic or the face-centered cubi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2017-07, Vol.58 (7), p.1
Main Authors: Bétermin, Laurent, Petrache, Mircea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-bcd9cefaaf4f4e2fcc95dcc819428108b1435c1d589c1900742447c892ed9fce3
cites cdi_FETCH-LOGICAL-c320t-bcd9cefaaf4f4e2fcc95dcc819428108b1435c1d589c1900742447c892ed9fce3
container_end_page
container_issue 7
container_start_page 1
container_title Journal of mathematical physics
container_volume 58
creator Bétermin, Laurent
Petrache, Mircea
description We consider the minimization of theta functions Λ ( α ) = ∑ p ∈ Λ e − π α | p | 2 amongst periodic configurations Λ ⊂ R d , by reducing the dimension of the problem, following as a motivation the case d = 3, where minimizers are supposed to be either the body-centered cubic or the face-centered cubic lattices. A first way to reduce dimension is by considering layered lattices, and minimize either among competitors presenting different sequences of repetitions of the layers, or among competitors presenting different shifts of the layers with respect to each other. The second case presents the problem of minimizing theta functions also on translated lattices, namely, minimizing ( Λ , u ) ↦ Λ + u ( α ) , relevant to the study of two-component Bose-Einstein condensates, Wigner bilayers and of general crystals. Another way to reduce dimension is by considering lattices with a product structure or by successively minimizing over concentric layers. The first direction leads to the question of minimization amongst orthorhombic lattices, whereas the second is relevant for asymptotics questions, which we study in detail in two dimensions.
doi_str_mv 10.1063/1.4995401
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4995401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116079714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-bcd9cefaaf4f4e2fcc95dcc819428108b1435c1d589c1900742447c892ed9fce3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtmWyySY5S6x8oCKLnJZ1NaEp3tybZg356d9uee5rhzW9mHo-QW6AzoGXxCDOuteAUzsgEqNK5LIU6JxNKGcsZV-qSXMW4oRRAcT4hn8--sW30XZsFW_eYxi5ZXLf-p7cxc13I0tpmjW994__Mft65UUsmc32734jZoG5NSh5tvCYXzmyjvTnWKfl-WXzN3_Llx-v7_GmZY8FoyldYa7TOGMcdt8whalEjKtCcqcH6CnghEGqhNIKmVHLGuUSlma21Q1tMyd3h7i50o9dUbbo-tMPLigGUVGo5nDhBgWaSl1IINlD3BwpDF2OwrtoF35jwWwGtxmArqI7BDuzDgY3o0z6QE_A_3wZ3_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927467552</pqid></control><display><type>article</type><title>Dimension reduction techniques for the minimization of theta functions on lattices</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Bétermin, Laurent ; Petrache, Mircea</creator><creatorcontrib>Bétermin, Laurent ; Petrache, Mircea</creatorcontrib><description>We consider the minimization of theta functions Λ ( α ) = ∑ p ∈ Λ e − π α | p | 2 amongst periodic configurations Λ ⊂ R d , by reducing the dimension of the problem, following as a motivation the case d = 3, where minimizers are supposed to be either the body-centered cubic or the face-centered cubic lattices. A first way to reduce dimension is by considering layered lattices, and minimize either among competitors presenting different sequences of repetitions of the layers, or among competitors presenting different shifts of the layers with respect to each other. The second case presents the problem of minimizing theta functions also on translated lattices, namely, minimizing ( Λ , u ) ↦ Λ + u ( α ) , relevant to the study of two-component Bose-Einstein condensates, Wigner bilayers and of general crystals. Another way to reduce dimension is by considering lattices with a product structure or by successively minimizing over concentric layers. The first direction leads to the question of minimization amongst orthorhombic lattices, whereas the second is relevant for asymptotics questions, which we study in detail in two dimensions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4995401</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Body centered cubic lattice ; Bose-Einstein condensates ; Condensates ; Crystal lattices ; Crystals ; Face centered cubic lattice ; Lattice theory ; Mathematics ; Optimization ; Physics</subject><ispartof>Journal of mathematical physics, 2017-07, Vol.58 (7), p.1</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Jul 2017</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-bcd9cefaaf4f4e2fcc95dcc819428108b1435c1d589c1900742447c892ed9fce3</citedby><cites>FETCH-LOGICAL-c320t-bcd9cefaaf4f4e2fcc95dcc819428108b1435c1d589c1900742447c892ed9fce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4995401$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76254</link.rule.ids></links><search><creatorcontrib>Bétermin, Laurent</creatorcontrib><creatorcontrib>Petrache, Mircea</creatorcontrib><title>Dimension reduction techniques for the minimization of theta functions on lattices</title><title>Journal of mathematical physics</title><description>We consider the minimization of theta functions Λ ( α ) = ∑ p ∈ Λ e − π α | p | 2 amongst periodic configurations Λ ⊂ R d , by reducing the dimension of the problem, following as a motivation the case d = 3, where minimizers are supposed to be either the body-centered cubic or the face-centered cubic lattices. A first way to reduce dimension is by considering layered lattices, and minimize either among competitors presenting different sequences of repetitions of the layers, or among competitors presenting different shifts of the layers with respect to each other. The second case presents the problem of minimizing theta functions also on translated lattices, namely, minimizing ( Λ , u ) ↦ Λ + u ( α ) , relevant to the study of two-component Bose-Einstein condensates, Wigner bilayers and of general crystals. Another way to reduce dimension is by considering lattices with a product structure or by successively minimizing over concentric layers. The first direction leads to the question of minimization amongst orthorhombic lattices, whereas the second is relevant for asymptotics questions, which we study in detail in two dimensions.</description><subject>Body centered cubic lattice</subject><subject>Bose-Einstein condensates</subject><subject>Condensates</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Face centered cubic lattice</subject><subject>Lattice theory</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtmWyySY5S6x8oCKLnJZ1NaEp3tybZg356d9uee5rhzW9mHo-QW6AzoGXxCDOuteAUzsgEqNK5LIU6JxNKGcsZV-qSXMW4oRRAcT4hn8--sW30XZsFW_eYxi5ZXLf-p7cxc13I0tpmjW994__Mft65UUsmc32734jZoG5NSh5tvCYXzmyjvTnWKfl-WXzN3_Llx-v7_GmZY8FoyldYa7TOGMcdt8whalEjKtCcqcH6CnghEGqhNIKmVHLGuUSlma21Q1tMyd3h7i50o9dUbbo-tMPLigGUVGo5nDhBgWaSl1IINlD3BwpDF2OwrtoF35jwWwGtxmArqI7BDuzDgY3o0z6QE_A_3wZ3_A</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Bétermin, Laurent</creator><creator>Petrache, Mircea</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201707</creationdate><title>Dimension reduction techniques for the minimization of theta functions on lattices</title><author>Bétermin, Laurent ; Petrache, Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-bcd9cefaaf4f4e2fcc95dcc819428108b1435c1d589c1900742447c892ed9fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Body centered cubic lattice</topic><topic>Bose-Einstein condensates</topic><topic>Condensates</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Face centered cubic lattice</topic><topic>Lattice theory</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bétermin, Laurent</creatorcontrib><creatorcontrib>Petrache, Mircea</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bétermin, Laurent</au><au>Petrache, Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension reduction techniques for the minimization of theta functions on lattices</atitle><jtitle>Journal of mathematical physics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>58</volume><issue>7</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider the minimization of theta functions Λ ( α ) = ∑ p ∈ Λ e − π α | p | 2 amongst periodic configurations Λ ⊂ R d , by reducing the dimension of the problem, following as a motivation the case d = 3, where minimizers are supposed to be either the body-centered cubic or the face-centered cubic lattices. A first way to reduce dimension is by considering layered lattices, and minimize either among competitors presenting different sequences of repetitions of the layers, or among competitors presenting different shifts of the layers with respect to each other. The second case presents the problem of minimizing theta functions also on translated lattices, namely, minimizing ( Λ , u ) ↦ Λ + u ( α ) , relevant to the study of two-component Bose-Einstein condensates, Wigner bilayers and of general crystals. Another way to reduce dimension is by considering lattices with a product structure or by successively minimizing over concentric layers. The first direction leads to the question of minimization amongst orthorhombic lattices, whereas the second is relevant for asymptotics questions, which we study in detail in two dimensions.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4995401</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2017-07, Vol.58 (7), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_4995401
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Body centered cubic lattice
Bose-Einstein condensates
Condensates
Crystal lattices
Crystals
Face centered cubic lattice
Lattice theory
Mathematics
Optimization
Physics
title Dimension reduction techniques for the minimization of theta functions on lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20reduction%20techniques%20for%20the%20minimization%20of%20theta%20functions%20on%20lattices&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=B%C3%A9termin,%20Laurent&rft.date=2017-07&rft.volume=58&rft.issue=7&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4995401&rft_dat=%3Cproquest_cross%3E2116079714%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-bcd9cefaaf4f4e2fcc95dcc819428108b1435c1d589c1900742447c892ed9fce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1927467552&rft_id=info:pmid/&rfr_iscdi=true