Loading…
Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition
The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surr...
Saved in:
Published in: | AIP advances 2018-05, Vol.8 (5), p.056220-056220-5 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393 |
container_end_page | 056220-5 |
container_issue | 5 |
container_start_page | 056220 |
container_title | AIP advances |
container_volume | 8 |
creator | Zhang, Qiushuang Guo, Shuai Yang, Xiao Zeng, Jiling Cao, Xuejing Chen, Renjie Yan, Aru |
description | The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically. |
doi_str_mv | 10.1063/1.5007267 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5007267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_37c1df9b149a486eb5db2ebe4c8e6e0a</doaj_id><sourcerecordid>2115806371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</originalsourceid><addsrcrecordid>eNqdkMFKAzEQhhdRsGgPvkHAk8LWnU12N3vUYrVQ6kXPIclO2pR2syZpoW_v1hb17FxmGD7-Gb4kuYFsBFlJH2BUZFmVl9VZMsih4CnN8_L8z3yZDENYZX2xGjLOBsl87NBru7NxT7BdylbjBttInCHBthE9NmTepBNMn8hGLlqMgag90UvcWC3XRMm4JA12LthoXXudXBi5Djg89avkY_L8Pn5NZ28v0_HjLNUs5zFFVlQGkRdK6bpEprFQRnGUBjVwyWujNFAuKRouTWUYM0CZNgC1horW9CqZHnMbJ1ei83Yj_V44acX3wvmFkD5avUZBKw2NqRWwWjJeoioalaPqj3IsMZN91u0xq_Puc4shipXb-rZ_X-TQm-vNVtBTd0dKexeCR_NzFTJxsC9AnOz37P2RDdpGefDyP3jn_C8ousbQL3nlk2Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115806371</pqid></control><display><type>article</type><title>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</title><source>Full-Text Journals in Chemistry (Open access)</source><source>AIP Open Access Journals</source><creator>Zhang, Qiushuang ; Guo, Shuai ; Yang, Xiao ; Zeng, Jiling ; Cao, Xuejing ; Chen, Renjie ; Yan, Aru</creator><creatorcontrib>Zhang, Qiushuang ; Guo, Shuai ; Yang, Xiao ; Zeng, Jiling ; Cao, Xuejing ; Chen, Renjie ; Yan, Aru</creatorcontrib><description>The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5007267</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coercivity ; Deposition ; Dysprosium ; Grain boundaries ; Grain boundary diffusion ; Magnets ; Neodymium ; Organic chemistry ; Rare earth elements ; Remanence ; Sintering (powder metallurgy) ; Thermal stability ; Trace elements</subject><ispartof>AIP advances, 2018-05, Vol.8 (5), p.056220-056220-5</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</citedby><cites>FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</cites><orcidid>0000-0001-5341-3296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.5007267$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27889,27923,27924,76279</link.rule.ids></links><search><creatorcontrib>Zhang, Qiushuang</creatorcontrib><creatorcontrib>Guo, Shuai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zeng, Jiling</creatorcontrib><creatorcontrib>Cao, Xuejing</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Yan, Aru</creatorcontrib><title>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</title><title>AIP advances</title><description>The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.</description><subject>Coercivity</subject><subject>Deposition</subject><subject>Dysprosium</subject><subject>Grain boundaries</subject><subject>Grain boundary diffusion</subject><subject>Magnets</subject><subject>Neodymium</subject><subject>Organic chemistry</subject><subject>Rare earth elements</subject><subject>Remanence</subject><subject>Sintering (powder metallurgy)</subject><subject>Thermal stability</subject><subject>Trace elements</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkMFKAzEQhhdRsGgPvkHAk8LWnU12N3vUYrVQ6kXPIclO2pR2syZpoW_v1hb17FxmGD7-Gb4kuYFsBFlJH2BUZFmVl9VZMsih4CnN8_L8z3yZDENYZX2xGjLOBsl87NBru7NxT7BdylbjBttInCHBthE9NmTepBNMn8hGLlqMgag90UvcWC3XRMm4JA12LthoXXudXBi5Djg89avkY_L8Pn5NZ28v0_HjLNUs5zFFVlQGkRdK6bpEprFQRnGUBjVwyWujNFAuKRouTWUYM0CZNgC1horW9CqZHnMbJ1ei83Yj_V44acX3wvmFkD5avUZBKw2NqRWwWjJeoioalaPqj3IsMZN91u0xq_Puc4shipXb-rZ_X-TQm-vNVtBTd0dKexeCR_NzFTJxsC9AnOz37P2RDdpGefDyP3jn_C8ousbQL3nlk2Y</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zhang, Qiushuang</creator><creator>Guo, Shuai</creator><creator>Yang, Xiao</creator><creator>Zeng, Jiling</creator><creator>Cao, Xuejing</creator><creator>Chen, Renjie</creator><creator>Yan, Aru</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5341-3296</orcidid></search><sort><creationdate>201805</creationdate><title>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</title><author>Zhang, Qiushuang ; Guo, Shuai ; Yang, Xiao ; Zeng, Jiling ; Cao, Xuejing ; Chen, Renjie ; Yan, Aru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coercivity</topic><topic>Deposition</topic><topic>Dysprosium</topic><topic>Grain boundaries</topic><topic>Grain boundary diffusion</topic><topic>Magnets</topic><topic>Neodymium</topic><topic>Organic chemistry</topic><topic>Rare earth elements</topic><topic>Remanence</topic><topic>Sintering (powder metallurgy)</topic><topic>Thermal stability</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiushuang</creatorcontrib><creatorcontrib>Guo, Shuai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zeng, Jiling</creatorcontrib><creatorcontrib>Cao, Xuejing</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Yan, Aru</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiushuang</au><au>Guo, Shuai</au><au>Yang, Xiao</au><au>Zeng, Jiling</au><au>Cao, Xuejing</au><au>Chen, Renjie</au><au>Yan, Aru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</atitle><jtitle>AIP advances</jtitle><date>2018-05</date><risdate>2018</risdate><volume>8</volume><issue>5</issue><spage>056220</spage><epage>056220-5</epage><pages>056220-056220-5</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5007267</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5341-3296</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2018-05, Vol.8 (5), p.056220-056220-5 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5007267 |
source | Full-Text Journals in Chemistry (Open access); AIP Open Access Journals |
subjects | Coercivity Deposition Dysprosium Grain boundaries Grain boundary diffusion Magnets Neodymium Organic chemistry Rare earth elements Remanence Sintering (powder metallurgy) Thermal stability Trace elements |
title | Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coercivity%20enhancement%20of%20sintered%20Nd-Fe-B%20magnets%20by%20chemical%20bath%20deposition&rft.jtitle=AIP%20advances&rft.au=Zhang,%20Qiushuang&rft.date=2018-05&rft.volume=8&rft.issue=5&rft.spage=056220&rft.epage=056220-5&rft.pages=056220-056220-5&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5007267&rft_dat=%3Cproquest_cross%3E2115806371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115806371&rft_id=info:pmid/&rfr_iscdi=true |