Loading…

Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition

The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surr...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2018-05, Vol.8 (5), p.056220-056220-5
Main Authors: Zhang, Qiushuang, Guo, Shuai, Yang, Xiao, Zeng, Jiling, Cao, Xuejing, Chen, Renjie, Yan, Aru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393
cites cdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393
container_end_page 056220-5
container_issue 5
container_start_page 056220
container_title AIP advances
container_volume 8
creator Zhang, Qiushuang
Guo, Shuai
Yang, Xiao
Zeng, Jiling
Cao, Xuejing
Chen, Renjie
Yan, Aru
description The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.
doi_str_mv 10.1063/1.5007267
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5007267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_37c1df9b149a486eb5db2ebe4c8e6e0a</doaj_id><sourcerecordid>2115806371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</originalsourceid><addsrcrecordid>eNqdkMFKAzEQhhdRsGgPvkHAk8LWnU12N3vUYrVQ6kXPIclO2pR2syZpoW_v1hb17FxmGD7-Gb4kuYFsBFlJH2BUZFmVl9VZMsih4CnN8_L8z3yZDENYZX2xGjLOBsl87NBru7NxT7BdylbjBttInCHBthE9NmTepBNMn8hGLlqMgag90UvcWC3XRMm4JA12LthoXXudXBi5Djg89avkY_L8Pn5NZ28v0_HjLNUs5zFFVlQGkRdK6bpEprFQRnGUBjVwyWujNFAuKRouTWUYM0CZNgC1horW9CqZHnMbJ1ei83Yj_V44acX3wvmFkD5avUZBKw2NqRWwWjJeoioalaPqj3IsMZN91u0xq_Puc4shipXb-rZ_X-TQm-vNVtBTd0dKexeCR_NzFTJxsC9AnOz37P2RDdpGefDyP3jn_C8ousbQL3nlk2Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115806371</pqid></control><display><type>article</type><title>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</title><source>Full-Text Journals in Chemistry (Open access)</source><source>AIP Open Access Journals</source><creator>Zhang, Qiushuang ; Guo, Shuai ; Yang, Xiao ; Zeng, Jiling ; Cao, Xuejing ; Chen, Renjie ; Yan, Aru</creator><creatorcontrib>Zhang, Qiushuang ; Guo, Shuai ; Yang, Xiao ; Zeng, Jiling ; Cao, Xuejing ; Chen, Renjie ; Yan, Aru</creatorcontrib><description>The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5007267</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coercivity ; Deposition ; Dysprosium ; Grain boundaries ; Grain boundary diffusion ; Magnets ; Neodymium ; Organic chemistry ; Rare earth elements ; Remanence ; Sintering (powder metallurgy) ; Thermal stability ; Trace elements</subject><ispartof>AIP advances, 2018-05, Vol.8 (5), p.056220-056220-5</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</citedby><cites>FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</cites><orcidid>0000-0001-5341-3296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.5007267$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27889,27923,27924,76279</link.rule.ids></links><search><creatorcontrib>Zhang, Qiushuang</creatorcontrib><creatorcontrib>Guo, Shuai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zeng, Jiling</creatorcontrib><creatorcontrib>Cao, Xuejing</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Yan, Aru</creatorcontrib><title>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</title><title>AIP advances</title><description>The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.</description><subject>Coercivity</subject><subject>Deposition</subject><subject>Dysprosium</subject><subject>Grain boundaries</subject><subject>Grain boundary diffusion</subject><subject>Magnets</subject><subject>Neodymium</subject><subject>Organic chemistry</subject><subject>Rare earth elements</subject><subject>Remanence</subject><subject>Sintering (powder metallurgy)</subject><subject>Thermal stability</subject><subject>Trace elements</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkMFKAzEQhhdRsGgPvkHAk8LWnU12N3vUYrVQ6kXPIclO2pR2syZpoW_v1hb17FxmGD7-Gb4kuYFsBFlJH2BUZFmVl9VZMsih4CnN8_L8z3yZDENYZX2xGjLOBsl87NBru7NxT7BdylbjBttInCHBthE9NmTepBNMn8hGLlqMgag90UvcWC3XRMm4JA12LthoXXudXBi5Djg89avkY_L8Pn5NZ28v0_HjLNUs5zFFVlQGkRdK6bpEprFQRnGUBjVwyWujNFAuKRouTWUYM0CZNgC1horW9CqZHnMbJ1ei83Yj_V44acX3wvmFkD5avUZBKw2NqRWwWjJeoioalaPqj3IsMZN91u0xq_Puc4shipXb-rZ_X-TQm-vNVtBTd0dKexeCR_NzFTJxsC9AnOz37P2RDdpGefDyP3jn_C8ousbQL3nlk2Y</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zhang, Qiushuang</creator><creator>Guo, Shuai</creator><creator>Yang, Xiao</creator><creator>Zeng, Jiling</creator><creator>Cao, Xuejing</creator><creator>Chen, Renjie</creator><creator>Yan, Aru</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5341-3296</orcidid></search><sort><creationdate>201805</creationdate><title>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</title><author>Zhang, Qiushuang ; Guo, Shuai ; Yang, Xiao ; Zeng, Jiling ; Cao, Xuejing ; Chen, Renjie ; Yan, Aru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coercivity</topic><topic>Deposition</topic><topic>Dysprosium</topic><topic>Grain boundaries</topic><topic>Grain boundary diffusion</topic><topic>Magnets</topic><topic>Neodymium</topic><topic>Organic chemistry</topic><topic>Rare earth elements</topic><topic>Remanence</topic><topic>Sintering (powder metallurgy)</topic><topic>Thermal stability</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiushuang</creatorcontrib><creatorcontrib>Guo, Shuai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zeng, Jiling</creatorcontrib><creatorcontrib>Cao, Xuejing</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Yan, Aru</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiushuang</au><au>Guo, Shuai</au><au>Yang, Xiao</au><au>Zeng, Jiling</au><au>Cao, Xuejing</au><au>Chen, Renjie</au><au>Yan, Aru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition</atitle><jtitle>AIP advances</jtitle><date>2018-05</date><risdate>2018</risdate><volume>8</volume><issue>5</issue><spage>056220</spage><epage>056220-5</epage><pages>056220-056220-5</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5007267</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5341-3296</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-05, Vol.8 (5), p.056220-056220-5
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_5007267
source Full-Text Journals in Chemistry (Open access); AIP Open Access Journals
subjects Coercivity
Deposition
Dysprosium
Grain boundaries
Grain boundary diffusion
Magnets
Neodymium
Organic chemistry
Rare earth elements
Remanence
Sintering (powder metallurgy)
Thermal stability
Trace elements
title Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coercivity%20enhancement%20of%20sintered%20Nd-Fe-B%20magnets%20by%20chemical%20bath%20deposition&rft.jtitle=AIP%20advances&rft.au=Zhang,%20Qiushuang&rft.date=2018-05&rft.volume=8&rft.issue=5&rft.spage=056220&rft.epage=056220-5&rft.pages=056220-056220-5&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5007267&rft_dat=%3Cproquest_cross%3E2115806371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e457fee85bbc96e4ce5bfb8eafec18a89fbc138a3ef8af7f44f134cf119c17393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115806371&rft_id=info:pmid/&rfr_iscdi=true