Loading…
Proposition of a model elucidating the AlN-on-Si (111) microstructure
AlN-on-Si can be considered as a model system for heteroepitaxial growth of highly mismatched materials. Indeed, AlN and Si drastically differ in terms of chemistry, crystalline structure, and lattice parameters. In this paper, we present a transmission electron microscopy and grazing incidence X-ra...
Saved in:
Published in: | Journal of applied physics 2018-06, Vol.123 (21) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AlN-on-Si can be considered as a model system for heteroepitaxial growth of highly mismatched materials. Indeed, AlN and Si drastically differ in terms of chemistry, crystalline structure, and lattice parameters. In this paper, we present a transmission electron microscopy and grazing incidence X-ray diffraction study of the microstructure of AlN layers epitaxially grown on Si (111) by molecular beam epitaxy. The large interfacial energy due to the dissimilarities between AlN and Si results in a 3D Volmer-Weber growth mode with the nucleation of independent and relaxed AlN islands. Despite a well-defined epitaxial relationship, these islands exhibit in-plane misorientations up to 6°–7°. We propose a model which quantitatively explains these misorientations by taking into account the relaxation of the islands through the introduction of 60° a-type misfit dislocations. Threading dislocations (TDs) are formed to compensate these misorientations when islands coalesce. TD density depends on two parameters: the islands' misorientation and density. We show that the former is related to the mismatch between AlN and Si, while the latter depends on the growth parameters. A large decrease in TD density occurs during the 3D growth stage by overlap and overgrowth of highly misoriented islands. On the other hand, the TD density does not change significantly when the growth becomes 2D. The proposed model, explaining the misorientations of 3D-grown islands, may be extended to other (0001)-oriented III-nitrides and more generally to any heteroepitaxial system exhibiting a 3D Volmer-Weber growth mode with islands relaxed thanks to the introduction of mixed-type misfit dislocations. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5017550 |