Loading…
Empirical potential for molecular simulation of graphene nanoplatelets
A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones...
Saved in:
Published in: | The Journal of chemical physics 2018-04, Vol.148 (14), p.144709-144709 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623 |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623 |
container_end_page | 144709 |
container_issue | 14 |
container_start_page | 144709 |
container_title | The Journal of chemical physics |
container_volume | 148 |
creator | Bourque, Alexander J. Rutledge, Gregory C. |
description | A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets. |
doi_str_mv | 10.1063/1.5023117 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5023117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025802737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEYmNw4AVQj4DU4SRL0hzRxABpEhc4V26aQlDblKQ98PYENjhysmV9_m19hJxTWFKQ_IYuBTBOqTogcwqFzpXUcEjmAIzmWoKckZMY3wGAKrY6JjOmpRCcwZxs7rrBBWewzQY_2n50qWt8yDrfWjO1GLLoulRH5_vMN9lrwOHN9jbrsfdDmtvWjvGUHDXYRnu2rwvysrl7Xj_k26f7x_XtNjfp2phbU6DgDdMMec2qShdYI2ghEbWqla5XyghbSWyk1ulXYEzwqgEGFUcmGV-Qy13uEPzHZONYdi4a27bYWz_FMm2IApjiKqFXO9QEH2OwTTkE12H4LCmU39pKWu61JfZiHztVna3_yF9PCbjeAdG48cfFP2lfhBZ0kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025802737</pqid></control><display><type>article</type><title>Empirical potential for molecular simulation of graphene nanoplatelets</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Bourque, Alexander J. ; Rutledge, Gregory C.</creator><creatorcontrib>Bourque, Alexander J. ; Rutledge, Gregory C.</creatorcontrib><description>A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5023117</identifier><identifier>PMID: 29655320</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2018-04, Vol.148 (14), p.144709-144709</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</citedby><cites>FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</cites><orcidid>0000-0001-8137-1732 ; 0000000181371732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5023117$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29655320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourque, Alexander J.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><title>Empirical potential for molecular simulation of graphene nanoplatelets</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEYmNw4AVQj4DU4SRL0hzRxABpEhc4V26aQlDblKQ98PYENjhysmV9_m19hJxTWFKQ_IYuBTBOqTogcwqFzpXUcEjmAIzmWoKckZMY3wGAKrY6JjOmpRCcwZxs7rrBBWewzQY_2n50qWt8yDrfWjO1GLLoulRH5_vMN9lrwOHN9jbrsfdDmtvWjvGUHDXYRnu2rwvysrl7Xj_k26f7x_XtNjfp2phbU6DgDdMMec2qShdYI2ghEbWqla5XyghbSWyk1ulXYEzwqgEGFUcmGV-Qy13uEPzHZONYdi4a27bYWz_FMm2IApjiKqFXO9QEH2OwTTkE12H4LCmU39pKWu61JfZiHztVna3_yF9PCbjeAdG48cfFP2lfhBZ0kw</recordid><startdate>20180414</startdate><enddate>20180414</enddate><creator>Bourque, Alexander J.</creator><creator>Rutledge, Gregory C.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8137-1732</orcidid><orcidid>https://orcid.org/0000000181371732</orcidid></search><sort><creationdate>20180414</creationdate><title>Empirical potential for molecular simulation of graphene nanoplatelets</title><author>Bourque, Alexander J. ; Rutledge, Gregory C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourque, Alexander J.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourque, Alexander J.</au><au>Rutledge, Gregory C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical potential for molecular simulation of graphene nanoplatelets</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-04-14</date><risdate>2018</risdate><volume>148</volume><issue>14</issue><spage>144709</spage><epage>144709</epage><pages>144709-144709</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.</abstract><cop>United States</cop><pmid>29655320</pmid><doi>10.1063/1.5023117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8137-1732</orcidid><orcidid>https://orcid.org/0000000181371732</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-04, Vol.148 (14), p.144709-144709 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5023117 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
title | Empirical potential for molecular simulation of graphene nanoplatelets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20potential%20for%20molecular%20simulation%20of%20graphene%20nanoplatelets&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bourque,%20Alexander%20J.&rft.date=2018-04-14&rft.volume=148&rft.issue=14&rft.spage=144709&rft.epage=144709&rft.pages=144709-144709&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5023117&rft_dat=%3Cproquest_cross%3E2025802737%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025802737&rft_id=info:pmid/29655320&rfr_iscdi=true |