Loading…

Empirical potential for molecular simulation of graphene nanoplatelets

A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2018-04, Vol.148 (14), p.144709-144709
Main Authors: Bourque, Alexander J., Rutledge, Gregory C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623
cites cdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623
container_end_page 144709
container_issue 14
container_start_page 144709
container_title The Journal of chemical physics
container_volume 148
creator Bourque, Alexander J.
Rutledge, Gregory C.
description A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.
doi_str_mv 10.1063/1.5023117
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5023117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025802737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEYmNw4AVQj4DU4SRL0hzRxABpEhc4V26aQlDblKQ98PYENjhysmV9_m19hJxTWFKQ_IYuBTBOqTogcwqFzpXUcEjmAIzmWoKckZMY3wGAKrY6JjOmpRCcwZxs7rrBBWewzQY_2n50qWt8yDrfWjO1GLLoulRH5_vMN9lrwOHN9jbrsfdDmtvWjvGUHDXYRnu2rwvysrl7Xj_k26f7x_XtNjfp2phbU6DgDdMMec2qShdYI2ghEbWqla5XyghbSWyk1ulXYEzwqgEGFUcmGV-Qy13uEPzHZONYdi4a27bYWz_FMm2IApjiKqFXO9QEH2OwTTkE12H4LCmU39pKWu61JfZiHztVna3_yF9PCbjeAdG48cfFP2lfhBZ0kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025802737</pqid></control><display><type>article</type><title>Empirical potential for molecular simulation of graphene nanoplatelets</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Bourque, Alexander J. ; Rutledge, Gregory C.</creator><creatorcontrib>Bourque, Alexander J. ; Rutledge, Gregory C.</creatorcontrib><description>A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5023117</identifier><identifier>PMID: 29655320</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2018-04, Vol.148 (14), p.144709-144709</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</citedby><cites>FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</cites><orcidid>0000-0001-8137-1732 ; 0000000181371732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5023117$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29655320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourque, Alexander J.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><title>Empirical potential for molecular simulation of graphene nanoplatelets</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEYmNw4AVQj4DU4SRL0hzRxABpEhc4V26aQlDblKQ98PYENjhysmV9_m19hJxTWFKQ_IYuBTBOqTogcwqFzpXUcEjmAIzmWoKckZMY3wGAKrY6JjOmpRCcwZxs7rrBBWewzQY_2n50qWt8yDrfWjO1GLLoulRH5_vMN9lrwOHN9jbrsfdDmtvWjvGUHDXYRnu2rwvysrl7Xj_k26f7x_XtNjfp2phbU6DgDdMMec2qShdYI2ghEbWqla5XyghbSWyk1ulXYEzwqgEGFUcmGV-Qy13uEPzHZONYdi4a27bYWz_FMm2IApjiKqFXO9QEH2OwTTkE12H4LCmU39pKWu61JfZiHztVna3_yF9PCbjeAdG48cfFP2lfhBZ0kw</recordid><startdate>20180414</startdate><enddate>20180414</enddate><creator>Bourque, Alexander J.</creator><creator>Rutledge, Gregory C.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8137-1732</orcidid><orcidid>https://orcid.org/0000000181371732</orcidid></search><sort><creationdate>20180414</creationdate><title>Empirical potential for molecular simulation of graphene nanoplatelets</title><author>Bourque, Alexander J. ; Rutledge, Gregory C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourque, Alexander J.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourque, Alexander J.</au><au>Rutledge, Gregory C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical potential for molecular simulation of graphene nanoplatelets</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-04-14</date><risdate>2018</risdate><volume>148</volume><issue>14</issue><spage>144709</spage><epage>144709</epage><pages>144709-144709</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.</abstract><cop>United States</cop><pmid>29655320</pmid><doi>10.1063/1.5023117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8137-1732</orcidid><orcidid>https://orcid.org/0000000181371732</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-04, Vol.148 (14), p.144709-144709
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_5023117
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
title Empirical potential for molecular simulation of graphene nanoplatelets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20potential%20for%20molecular%20simulation%20of%20graphene%20nanoplatelets&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bourque,%20Alexander%20J.&rft.date=2018-04-14&rft.volume=148&rft.issue=14&rft.spage=144709&rft.epage=144709&rft.pages=144709-144709&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5023117&rft_dat=%3Cproquest_cross%3E2025802737%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-ec8a53f292a3d2bb98ada0956aa97d79d47c5eb6af69917202253bf020b3a2623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025802737&rft_id=info:pmid/29655320&rfr_iscdi=true