Loading…

Self-consistent continuum-based transient simulation of electroformation of niobium oxide-tantalum dioxide selector-memristor structures

Transient electroformation simulation of niobium oxide selectors, self-aligned to tantalum dioxide memristor structures, is described by a computational solution of the mass transport equation self-consistently coupled to the heat and electronic charge transport equations. Augmentation of an electro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-10, Vol.124 (16)
Main Authors: Sevic, John F., Kobayashi, Nobuhiko P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-ba86ca230894cdecc37dd912bcea9087f44e7412143e4dcd14bad542429f44fc3
cites cdi_FETCH-LOGICAL-c327t-ba86ca230894cdecc37dd912bcea9087f44e7412143e4dcd14bad542429f44fc3
container_end_page
container_issue 16
container_start_page
container_title Journal of applied physics
container_volume 124
creator Sevic, John F.
Kobayashi, Nobuhiko P.
description Transient electroformation simulation of niobium oxide selectors, self-aligned to tantalum dioxide memristor structures, is described by a computational solution of the mass transport equation self-consistently coupled to the heat and electronic charge transport equations. Augmentation of an electrothermal drift-diffusion formulation by a thermally activated field-enhanced mass transport term self-consistently describes transient evolution ab initio of electric potential, temperature, and charge carrier density to model electroformation of our niobium oxide-tantalum dioxide selector-memristor structure. The present formulation requires no a priori current filament model. Simulated transient electroforming behavior of our as-fabricated self-aligned selectors illustrates that transient evolution of niobium oxide to its stable metallic phase produces a decrease in localized resistivity, initiating a self-limiting effect on spontaneous electroformation, suggesting a method to finely tailor electroformation processes by explicitly tuning pre-fabrication device design and post-fabrication electrical operations for optimum initial conditioning of selector structures.
doi_str_mv 10.1063/1.5040517
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5040517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123975890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ba86ca230894cdecc37dd912bcea9087f44e7412143e4dcd14bad542429f44fc3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL32DAlUJqbtNMllK8QcGFuh4yuUDKzKTmIvoGPrZpK3UhuDo55__yn-QH4ByjGUZzeo1nNWKoxvwATDBqBOR1jQ7BBCGCYSO4OAYnMa4QwrihYgK-nk1vofJjdDGZMVXlmNyY8wA7GY2uUpBF2yjRDbmXyfmx8rYyvVEpeOvDsJ-NzncuD5X_cNrAJMck-9Jqtx1UcXvHBziYIZR1PlQxhaxSDiaegiMr-2jOfuoUvN7dviwe4PLp_nFxs4SKEp7Ko5q5koSWrzGljVKUay0w6ZSRAjXcMmY4wwQzaphWGrNO6poRRkSRrKJTcLHzXQf_lk1M7crnMJaVLcGECl43AhXqckep4GMMxrbr4AYZPluM2k3QLW5_gi7s1Y6NyqVtFnv43YdfsF1r-x_81_kbMNWQ8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123975890</pqid></control><display><type>article</type><title>Self-consistent continuum-based transient simulation of electroformation of niobium oxide-tantalum dioxide selector-memristor structures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sevic, John F. ; Kobayashi, Nobuhiko P.</creator><creatorcontrib>Sevic, John F. ; Kobayashi, Nobuhiko P.</creatorcontrib><description>Transient electroformation simulation of niobium oxide selectors, self-aligned to tantalum dioxide memristor structures, is described by a computational solution of the mass transport equation self-consistently coupled to the heat and electronic charge transport equations. Augmentation of an electrothermal drift-diffusion formulation by a thermally activated field-enhanced mass transport term self-consistently describes transient evolution ab initio of electric potential, temperature, and charge carrier density to model electroformation of our niobium oxide-tantalum dioxide selector-memristor structure. The present formulation requires no a priori current filament model. Simulated transient electroforming behavior of our as-fabricated self-aligned selectors illustrates that transient evolution of niobium oxide to its stable metallic phase produces a decrease in localized resistivity, initiating a self-limiting effect on spontaneous electroformation, suggesting a method to finely tailor electroformation processes by explicitly tuning pre-fabrication device design and post-fabrication electrical operations for optimum initial conditioning of selector structures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5040517</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier density ; Charge density ; Charge transport ; Computer simulation ; Current carriers ; Dioxides ; Electroforming ; Evolution ; Memristors ; Niobium oxides ; Selectors ; Self alignment ; Transport equations</subject><ispartof>Journal of applied physics, 2018-10, Vol.124 (16)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ba86ca230894cdecc37dd912bcea9087f44e7412143e4dcd14bad542429f44fc3</citedby><cites>FETCH-LOGICAL-c327t-ba86ca230894cdecc37dd912bcea9087f44e7412143e4dcd14bad542429f44fc3</cites><orcidid>0000-0002-2721-1057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Sevic, John F.</creatorcontrib><creatorcontrib>Kobayashi, Nobuhiko P.</creatorcontrib><title>Self-consistent continuum-based transient simulation of electroformation of niobium oxide-tantalum dioxide selector-memristor structures</title><title>Journal of applied physics</title><description>Transient electroformation simulation of niobium oxide selectors, self-aligned to tantalum dioxide memristor structures, is described by a computational solution of the mass transport equation self-consistently coupled to the heat and electronic charge transport equations. Augmentation of an electrothermal drift-diffusion formulation by a thermally activated field-enhanced mass transport term self-consistently describes transient evolution ab initio of electric potential, temperature, and charge carrier density to model electroformation of our niobium oxide-tantalum dioxide selector-memristor structure. The present formulation requires no a priori current filament model. Simulated transient electroforming behavior of our as-fabricated self-aligned selectors illustrates that transient evolution of niobium oxide to its stable metallic phase produces a decrease in localized resistivity, initiating a self-limiting effect on spontaneous electroformation, suggesting a method to finely tailor electroformation processes by explicitly tuning pre-fabrication device design and post-fabrication electrical operations for optimum initial conditioning of selector structures.</description><subject>Applied physics</subject><subject>Carrier density</subject><subject>Charge density</subject><subject>Charge transport</subject><subject>Computer simulation</subject><subject>Current carriers</subject><subject>Dioxides</subject><subject>Electroforming</subject><subject>Evolution</subject><subject>Memristors</subject><subject>Niobium oxides</subject><subject>Selectors</subject><subject>Self alignment</subject><subject>Transport equations</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL32DAlUJqbtNMllK8QcGFuh4yuUDKzKTmIvoGPrZpK3UhuDo55__yn-QH4ByjGUZzeo1nNWKoxvwATDBqBOR1jQ7BBCGCYSO4OAYnMa4QwrihYgK-nk1vofJjdDGZMVXlmNyY8wA7GY2uUpBF2yjRDbmXyfmx8rYyvVEpeOvDsJ-NzncuD5X_cNrAJMck-9Jqtx1UcXvHBziYIZR1PlQxhaxSDiaegiMr-2jOfuoUvN7dviwe4PLp_nFxs4SKEp7Ko5q5koSWrzGljVKUay0w6ZSRAjXcMmY4wwQzaphWGrNO6poRRkSRrKJTcLHzXQf_lk1M7crnMJaVLcGECl43AhXqckep4GMMxrbr4AYZPluM2k3QLW5_gi7s1Y6NyqVtFnv43YdfsF1r-x_81_kbMNWQ8Q</recordid><startdate>20181028</startdate><enddate>20181028</enddate><creator>Sevic, John F.</creator><creator>Kobayashi, Nobuhiko P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2721-1057</orcidid></search><sort><creationdate>20181028</creationdate><title>Self-consistent continuum-based transient simulation of electroformation of niobium oxide-tantalum dioxide selector-memristor structures</title><author>Sevic, John F. ; Kobayashi, Nobuhiko P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ba86ca230894cdecc37dd912bcea9087f44e7412143e4dcd14bad542429f44fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Carrier density</topic><topic>Charge density</topic><topic>Charge transport</topic><topic>Computer simulation</topic><topic>Current carriers</topic><topic>Dioxides</topic><topic>Electroforming</topic><topic>Evolution</topic><topic>Memristors</topic><topic>Niobium oxides</topic><topic>Selectors</topic><topic>Self alignment</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevic, John F.</creatorcontrib><creatorcontrib>Kobayashi, Nobuhiko P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevic, John F.</au><au>Kobayashi, Nobuhiko P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-consistent continuum-based transient simulation of electroformation of niobium oxide-tantalum dioxide selector-memristor structures</atitle><jtitle>Journal of applied physics</jtitle><date>2018-10-28</date><risdate>2018</risdate><volume>124</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Transient electroformation simulation of niobium oxide selectors, self-aligned to tantalum dioxide memristor structures, is described by a computational solution of the mass transport equation self-consistently coupled to the heat and electronic charge transport equations. Augmentation of an electrothermal drift-diffusion formulation by a thermally activated field-enhanced mass transport term self-consistently describes transient evolution ab initio of electric potential, temperature, and charge carrier density to model electroformation of our niobium oxide-tantalum dioxide selector-memristor structure. The present formulation requires no a priori current filament model. Simulated transient electroforming behavior of our as-fabricated self-aligned selectors illustrates that transient evolution of niobium oxide to its stable metallic phase produces a decrease in localized resistivity, initiating a self-limiting effect on spontaneous electroformation, suggesting a method to finely tailor electroformation processes by explicitly tuning pre-fabrication device design and post-fabrication electrical operations for optimum initial conditioning of selector structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5040517</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2721-1057</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-10, Vol.124 (16)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5040517
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Carrier density
Charge density
Charge transport
Computer simulation
Current carriers
Dioxides
Electroforming
Evolution
Memristors
Niobium oxides
Selectors
Self alignment
Transport equations
title Self-consistent continuum-based transient simulation of electroformation of niobium oxide-tantalum dioxide selector-memristor structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-consistent%20continuum-based%20transient%20simulation%20of%20electroformation%20of%20niobium%20oxide-tantalum%20dioxide%20selector-memristor%20structures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Sevic,%20John%20F.&rft.date=2018-10-28&rft.volume=124&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5040517&rft_dat=%3Cproquest_cross%3E2123975890%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-ba86ca230894cdecc37dd912bcea9087f44e7412143e4dcd14bad542429f44fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123975890&rft_id=info:pmid/&rfr_iscdi=true