Loading…

Structural stability and electro-elastic property of YCOB crystal annealed in harsh environment

The YCa4O(BO3)3 (YCOB) piezoelectric crystal has been actively studied for high temperature sensor applications in the last few years. In this paper, the structure stability and electro-elastic properties of the YCOB crystal annealed in a harsh environment (high temperatures of 600–1100 °C and a low...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-09, Vol.113 (12)
Main Authors: Tian, Shiwei, Li, Lili, Yu, Fapeng, Li, Yanlu, Chen, Feifei, Duan, Xiulan, Cheng, Xiufeng, Wang, Zhengping, Zhang, Shujun, Zhao, Xian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The YCa4O(BO3)3 (YCOB) piezoelectric crystal has been actively studied for high temperature sensor applications in the last few years. In this paper, the structure stability and electro-elastic properties of the YCOB crystal annealed in a harsh environment (high temperatures of 600–1100 °C and a low atmospheric pressure of 2 × 10−5 atm for 24 h) were studied. The chemical bonding energy of the annealed YCOB crystal was studied, with variations being less than 0.2 eV, showing the high stability of the electronic structure in the YCOB crystal. The energies of vacancy formation (EVF) for Y, Ca, O, and B atoms were analyzed via first principles calculation. The O atoms were found to possess the lowest EVF value, being easier to escape (annealing in critical conditions) and compensate (thermal treatment at elevated temperatures in air) when compared to other atoms, thus leading to oxygen vacancy defects and a decrease in the chemical bonding strength after the annealing process. This is deemed to be the main factor dominating the electro-elastic property changes and their recovery behaviours.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5042284