Loading…
Acceptor doping of β-Ga2O3 by Mg and N ion implantations
Deep acceptor doping of β-Ga2O3 with Mg and N was demonstrated by implantation of the impurity ions into n-type bulk substrates. Systematic physical and electrical characterizations were performed to demonstrate recovery of the implantation-damaged crystals and electrical activation of the dopant at...
Saved in:
Published in: | Applied physics letters 2018-09, Vol.113 (10) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep acceptor doping of β-Ga2O3 with Mg and N was demonstrated by implantation of the impurity ions into n-type bulk substrates. Systematic physical and electrical characterizations were performed to demonstrate recovery of the implantation-damaged crystals and electrical activation of the dopant atoms by thermal annealing at 1000–1200 °C in an N2 atmosphere. N was found to exhibit much lower thermal diffusivity than Mg, thus enabling the use of higher annealing temperatures to maximize N activation efficiency without significantly altering the impurity profile. Consequently, an n-Ga2O3/Ga2O3:N/n-Ga2O3 structure was capable of sustaining a much larger voltage across its end terminals than its Mg-doped counterpart. The development of an ion implantation technology for acceptor doping of β-Ga2O3 creates unique opportunities for designing and engineering a variety of high-voltage β-Ga2O3 devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5050040 |