Loading…
Effects of heavy ion irradiation on Zr-2.5Nb pressure tube alloy. II. Orientation dependent dislocation loop propagation and elemental redistribution
The irradiation induced microstructure of heavy ion irradiated Zr-2.5Nb alloy has been characterized by X-ray diffraction and transmission electron microscopy (TEM). Diffraction line profile analysis is used to analyze the X-ray diffraction data and anisotropic responses to irradiation in terms of p...
Saved in:
Published in: | Journal of applied physics 2019-02, Vol.125 (8) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The irradiation induced microstructure of heavy ion irradiated Zr-2.5Nb alloy has been characterized by X-ray diffraction and transmission electron microscopy (TEM). Diffraction line profile analysis is used to analyze the X-ray diffraction data and anisotropic responses to irradiation in terms of peak broadening in axial direction (AD; sample surface normal aligned with axial direction) and transverse direction (TD; sample surface normal aligned with transverse direction) samples. More specifically, AD samples demonstrate a significantly higher peak broadening than TD for the same irradiation dose level. TEM characterization shows that heavy ion irradiation induces small type dislocation loops in the range of 2-10 nm in diameter. However, up to 0.2 dpa, the dislocation densities calculated from X-ray diffraction and TEM characterization both show comparable quantities for AD and TD samples. The considerable additional peak broadening of AD samples is attributed to an intergranular strain distribution. Chemi-STEM analysis shows that Fe is depleted from β-phase to α-β phase boundary and then into the α matrix, mainly due to ion sputtering during heavy ion irradiation. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5054886 |