Loading…
Electrical and optical properties of scandium nitride nanolayers on MgO (100) substrate
Scandium nitride (ScN) is a rocksalt-structure semiconductor that has attracted attention for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices. ScN nanolayers of 30 nm thickness were deposited on MgO...
Saved in:
Published in: | AIP advances 2019-01, Vol.9 (1), p.015317-015317-7 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Scandium nitride (ScN) is a rocksalt-structure semiconductor that has attracted attention for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices. ScN nanolayers of 30 nm thickness were deposited on MgO (001) substrate by reactive sputtering. Epitaxial growth of ScN(002) was observed with a mosaicity between grains around the {002} growth axis. Both direct band gaps theoretically predicted were measured at 2.59 eV and 4.25 eV for the energy gaps between the valence band and the conductance band at the X point and the Γ point respectively. Electrical and optical properties were observed to be strongly influenced by the crystalline order and the carrier concentration. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5056245 |