Loading…

The surface affinity of cations depends on both the cations and the nature of the surface

Specific ion effects at interfaces are important for a variety of thermodynamic properties of electrolyte solutions, like surface tension and the phase behavior of surfactants. We report the relative surface affinity of Na+ and D3O+ at both the D2O-air and the sodium dodecyl sulfate (surfactant)-cov...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-01, Vol.150 (4), p.044706-044706
Main Authors: Das, Sudipta, Bonn, Mischa, Backus, Ellen H. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Specific ion effects at interfaces are important for a variety of thermodynamic properties of electrolyte solutions, like surface tension and the phase behavior of surfactants. We report the relative surface affinity of Na+ and D3O+ at both the D2O-air and the sodium dodecyl sulfate (surfactant)-covered D2O surface by studying the alignment of interfacial D2O, using vibrational sum frequency generation spectroscopy. The surface propensity of ions is found to be a function of both the nature of the ion and the nature of the surface. Specifically, for the charged, surfactant-covered interface, Na+ has a higher affinity than D3O+. In contrast, D3O+ has a higher affinity than Na+ at the air-D2O interface. The relative surface affinity of cations thus depends on both details of the cation and the type of interface.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5065075