Loading…

Anomalous terahertz dielectric phase in charge-ordered La1/3Sr2/3FeO3 thin film

Orthoferrites are the model systems for understanding the origin of complex valance-skipping charge ordering (CO) associated with antiferromagnetic spin ordering as a sequence of Fe+3Fe+3Fe+5Fe+3Fe+3Fe+5 … along the pseudocubic (111) direction. Here, we have investigated the low-energy dynamics of o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2019-04, Vol.125 (15)
Main Authors: K, Santhosh Kumar, Rana, D. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orthoferrites are the model systems for understanding the origin of complex valance-skipping charge ordering (CO) associated with antiferromagnetic spin ordering as a sequence of Fe+3Fe+3Fe+5Fe+3Fe+3Fe+5 … along the pseudocubic (111) direction. Here, we have investigated the low-energy dynamics of one such system La1/3Sr2/3FeO3 along the (111) crystal orientation using terahertz (THz) time domain spectroscopy. The temperature dependent THz optical constants reveal a purely electronic semiconductor to a charge-ordered Mott insulator transition, which is contrary to the reported metal–insulator transition. Above the transition of ∼180 K, THz conductivity shows a thermally activated charge-carrier hopping type conduction with activation energy 92.7 meV (87.3 meV) when measured in cooling (heating). The dielectric constant also indicates that the charge ordering formation starts at 200 K, which exists down to 20 K. Further analysis shows a reduction in the effective number of carriers by a fraction of about six as temperature decreases from 300 K to the CO transition at 200 K; this depletion of carriers triggers the intersite interactions required for CO. These findings suggest that a high dielectric constant associated with charge order in the THz region could be useful for THz applications in communication.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5071464