Loading…

Non-acoustical parameters and sound absorption characteristics of porous polyurethane foams

The present paper investigates the relationships between non-acoustical parameters and sound absorption characteristics of the porous polyurethane foams based on the proposed simplistic unit cell model. The simplistic unit cell model, in which the inner shape of each unit cell is spherical and the n...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2019-03, Vol.31 (3)
Main Authors: Ning, Jingfeng, Zhao, Guiping, He, Xiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper investigates the relationships between non-acoustical parameters and sound absorption characteristics of the porous polyurethane foams based on the proposed simplistic unit cell model. The simplistic unit cell model, in which the inner shape of each unit cell is spherical and the nodes at the joint have a triangle concave cross section shape, is established from foaming process and scanning electron microscope (SEM) pictures of the porous polyurethane foams. The non-acoustical parameters and sound absorption characteristics of the porous polyurethane foams are expressed as functions of the geometric parameters of the simplistic unit cell model. The present predictions are in good agreement with the existing experiments and numerical results. Finally, the correlating relationships between the viscous and thermal effects and sound absorption coefficients of the porous polyurethane foams are discussed using the simplistic unit cell model. It is demonstrated that the simplistic unit cell model could describe the microstructure characterization and sound absorption properties of the porous polyurethane foams and the influence of the viscous effect on the sound absorption coefficients is more obvious than that of the thermal effect in the studied frequency ranges.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.5079486