Loading…

Feynman diagram description of 2D-Raman-THz spectroscopy applied to water

2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information conte...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-01, Vol.150 (4), p.044202-044202
Main Authors: Sidler, David, Hamm, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-27280ed2ed7dee959446eba54581f206d9c3ab9f95863c0e685a9f74316d4ec43
cites cdi_FETCH-LOGICAL-c383t-27280ed2ed7dee959446eba54581f206d9c3ab9f95863c0e685a9f74316d4ec43
container_end_page 044202
container_issue 4
container_start_page 044202
container_title The Journal of chemical physics
container_volume 150
creator Sidler, David
Hamm, Peter
description 2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information content is not fully explored to date. While the spectroscopic signal can be simulated based on molecular dynamics simulation in connection with a water force field, it is difficult to relate spectroscopic signatures to the underlying microscopic features of the force field. Here, a completely different approach is taken that starts from an as simple as possible model, i.e., a single vibrational mode with electrical and mechanical anharmonicity augmented with homogeneous and inhomogeneous broadening. An intuitive Feynman diagram picture is developed for all possible pulse sequences of hybrid 2D-Raman-THz spectroscopy. It is shown that the model can explain the experimental data essentially quantitatively with a very small set of parameters, and it is tentatively concluded that the experimental signal originates from the hydrogen-bond stretching vibration around 170 cm−1. Furthermore, the echo observed in the experimental data can be quantified by fitting the model. A dominant fraction of its linewidth is attributed to quasi-inhomogeneous broadening in the slow-modulation limit with a correlation time of 370 fs, reflecting the lifetime of the hydrogen-bond networks giving rise to the absorption band.
doi_str_mv 10.1063/1.5079497
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5079497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179508369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-27280ed2ed7dee959446eba54581f206d9c3ab9f95863c0e685a9f74316d4ec43</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFK3Vg39AAl5UiM5-ZDd7lGq1IAii57DdnUhKk427qVJ_vSmtCoKe5jAPLzMvIUcULihIfkkvMlBaaLVFBhRynSqpYZsMABhNtQS5R_ZjnAEAVUzskj0OCjRT2YBMxrhsatMkrjIvwdSJw2hD1XaVbxJfJuw6fTT9Pn26-0hii7YLPlrfLhPTtvMKXdL55N10GA7ITmnmEQ83c0iexzdPo7v0_uF2Mrq6Ty3PeZcyxXJAx9Aph6gzLYTEqclEltOSgXTacjPVpc5yyS2gzDOjSyU4lU6gFXxITte5bfCvC4xdUVfR4nxuGvSLWDCqdAY5l7qnJ7_ozC9C01-3UkwI0Jr26mytbP9aDFgWbahqE5YFhWLVb0GLTb-9Pd4kLqY1um_5VWgPztcg2qozqxb_TfsTv_nwA4vWlfwTCg2PUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172440991</pqid></control><display><type>article</type><title>Feynman diagram description of 2D-Raman-THz spectroscopy applied to water</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Sidler, David ; Hamm, Peter</creator><creatorcontrib>Sidler, David ; Hamm, Peter</creatorcontrib><description>2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information content is not fully explored to date. While the spectroscopic signal can be simulated based on molecular dynamics simulation in connection with a water force field, it is difficult to relate spectroscopic signatures to the underlying microscopic features of the force field. Here, a completely different approach is taken that starts from an as simple as possible model, i.e., a single vibrational mode with electrical and mechanical anharmonicity augmented with homogeneous and inhomogeneous broadening. An intuitive Feynman diagram picture is developed for all possible pulse sequences of hybrid 2D-Raman-THz spectroscopy. It is shown that the model can explain the experimental data essentially quantitatively with a very small set of parameters, and it is tentatively concluded that the experimental signal originates from the hydrogen-bond stretching vibration around 170 cm−1. Furthermore, the echo observed in the experimental data can be quantified by fitting the model. A dominant fraction of its linewidth is attributed to quasi-inhomogeneous broadening in the slow-modulation limit with a correlation time of 370 fs, reflecting the lifetime of the hydrogen-bond networks giving rise to the absorption band.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5079497</identifier><identifier>PMID: 30709275</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Absorption spectra ; Anharmonicity ; Computer simulation ; Feynman diagrams ; Molecular dynamics ; Physics ; Spectroscopy ; Spectrum analysis ; Two dimensional models ; Water</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (4), p.044202-044202</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-27280ed2ed7dee959446eba54581f206d9c3ab9f95863c0e685a9f74316d4ec43</citedby><cites>FETCH-LOGICAL-c383t-27280ed2ed7dee959446eba54581f206d9c3ab9f95863c0e685a9f74316d4ec43</cites><orcidid>0000-0003-1106-6032 ; 0000000311066032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5079497$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,780,782,793,27911,27912,76140</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sidler, David</creatorcontrib><creatorcontrib>Hamm, Peter</creatorcontrib><title>Feynman diagram description of 2D-Raman-THz spectroscopy applied to water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information content is not fully explored to date. While the spectroscopic signal can be simulated based on molecular dynamics simulation in connection with a water force field, it is difficult to relate spectroscopic signatures to the underlying microscopic features of the force field. Here, a completely different approach is taken that starts from an as simple as possible model, i.e., a single vibrational mode with electrical and mechanical anharmonicity augmented with homogeneous and inhomogeneous broadening. An intuitive Feynman diagram picture is developed for all possible pulse sequences of hybrid 2D-Raman-THz spectroscopy. It is shown that the model can explain the experimental data essentially quantitatively with a very small set of parameters, and it is tentatively concluded that the experimental signal originates from the hydrogen-bond stretching vibration around 170 cm−1. Furthermore, the echo observed in the experimental data can be quantified by fitting the model. A dominant fraction of its linewidth is attributed to quasi-inhomogeneous broadening in the slow-modulation limit with a correlation time of 370 fs, reflecting the lifetime of the hydrogen-bond networks giving rise to the absorption band.</description><subject>Absorption spectra</subject><subject>Anharmonicity</subject><subject>Computer simulation</subject><subject>Feynman diagrams</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Two dimensional models</subject><subject>Water</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFK3Vg39AAl5UiM5-ZDd7lGq1IAii57DdnUhKk427qVJ_vSmtCoKe5jAPLzMvIUcULihIfkkvMlBaaLVFBhRynSqpYZsMABhNtQS5R_ZjnAEAVUzskj0OCjRT2YBMxrhsatMkrjIvwdSJw2hD1XaVbxJfJuw6fTT9Pn26-0hii7YLPlrfLhPTtvMKXdL55N10GA7ITmnmEQ83c0iexzdPo7v0_uF2Mrq6Ty3PeZcyxXJAx9Aph6gzLYTEqclEltOSgXTacjPVpc5yyS2gzDOjSyU4lU6gFXxITte5bfCvC4xdUVfR4nxuGvSLWDCqdAY5l7qnJ7_ozC9C01-3UkwI0Jr26mytbP9aDFgWbahqE5YFhWLVb0GLTb-9Pd4kLqY1um_5VWgPztcg2qozqxb_TfsTv_nwA4vWlfwTCg2PUw</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Sidler, David</creator><creator>Hamm, Peter</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1106-6032</orcidid><orcidid>https://orcid.org/0000000311066032</orcidid></search><sort><creationdate>20190128</creationdate><title>Feynman diagram description of 2D-Raman-THz spectroscopy applied to water</title><author>Sidler, David ; Hamm, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-27280ed2ed7dee959446eba54581f206d9c3ab9f95863c0e685a9f74316d4ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectra</topic><topic>Anharmonicity</topic><topic>Computer simulation</topic><topic>Feynman diagrams</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Two dimensional models</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidler, David</creatorcontrib><creatorcontrib>Hamm, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidler, David</au><au>Hamm, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feynman diagram description of 2D-Raman-THz spectroscopy applied to water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>150</volume><issue>4</issue><spage>044202</spage><epage>044202</epage><pages>044202-044202</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information content is not fully explored to date. While the spectroscopic signal can be simulated based on molecular dynamics simulation in connection with a water force field, it is difficult to relate spectroscopic signatures to the underlying microscopic features of the force field. Here, a completely different approach is taken that starts from an as simple as possible model, i.e., a single vibrational mode with electrical and mechanical anharmonicity augmented with homogeneous and inhomogeneous broadening. An intuitive Feynman diagram picture is developed for all possible pulse sequences of hybrid 2D-Raman-THz spectroscopy. It is shown that the model can explain the experimental data essentially quantitatively with a very small set of parameters, and it is tentatively concluded that the experimental signal originates from the hydrogen-bond stretching vibration around 170 cm−1. Furthermore, the echo observed in the experimental data can be quantified by fitting the model. A dominant fraction of its linewidth is attributed to quasi-inhomogeneous broadening in the slow-modulation limit with a correlation time of 370 fs, reflecting the lifetime of the hydrogen-bond networks giving rise to the absorption band.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30709275</pmid><doi>10.1063/1.5079497</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1106-6032</orcidid><orcidid>https://orcid.org/0000000311066032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-01, Vol.150 (4), p.044202-044202
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_5079497
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Absorption spectra
Anharmonicity
Computer simulation
Feynman diagrams
Molecular dynamics
Physics
Spectroscopy
Spectrum analysis
Two dimensional models
Water
title Feynman diagram description of 2D-Raman-THz spectroscopy applied to water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feynman%20diagram%20description%20of%202D-Raman-THz%20spectroscopy%20applied%20to%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sidler,%20David&rft.date=2019-01-28&rft.volume=150&rft.issue=4&rft.spage=044202&rft.epage=044202&rft.pages=044202-044202&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5079497&rft_dat=%3Cproquest_cross%3E2179508369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-27280ed2ed7dee959446eba54581f206d9c3ab9f95863c0e685a9f74316d4ec43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172440991&rft_id=info:pmid/30709275&rfr_iscdi=true