Loading…

Two-dimensional infrared and terahertz detectors: Outlook and status

Since the discovery of graphene, its applications to electronic and optoelectronic devices have been intensively and thoroughly researched. Extraordinary and unusual electronic and optical properties make graphene and other two-dimensional (2D) materials promising candidates for infrared and teraher...

Full description

Saved in:
Bibliographic Details
Published in:Applied Physics Reviews 2019-06, Vol.6 (2)
Main Authors: Rogalski, A., Kopytko, M., Martyniuk, P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the discovery of graphene, its applications to electronic and optoelectronic devices have been intensively and thoroughly researched. Extraordinary and unusual electronic and optical properties make graphene and other two-dimensional (2D) materials promising candidates for infrared and terahertz (THz) photodetectors. Until now, however, 2D material-based performance is lower in comparison with those of infrared and terahertz detectors existing in the global market. This paper gives an overview of emerging 2D material detectors' performance and comparison with the traditionally and commercially available ones in different applications in high operating temperature conditions. The most effective single graphene detectors are THz detectors utilizing the plasma rectification effect in the field-effect transistors. Most of the 2D layered semiconducting material photodetectors operate in the visible and near-infrared regions, and generally, their high sensitivity does not coincide with the fast response time, which limits real detector functions.
ISSN:1931-9401
1931-9401
DOI:10.1063/1.5088578