Loading…
Influence of the solvent in the electronic excitation of aromatic alcohols: Excited state IR-UV of propofol(H2O)8
It is well known that water plays an important role in the reactivity and dynamics in a solution of molecules in electronic excited states. For example, electronic excitation is usually accompanied by a solvent rearrangement that may also influence the redistribution of the excitation energy. Howeve...
Saved in:
Published in: | The Journal of chemical physics 2019-06, Vol.150 (21), p.214306-214306 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well known that water plays an important role in the reactivity and dynamics in a solution of molecules in electronic excited states. For example, electronic excitation is usually accompanied by a solvent rearrangement that may also influence the redistribution of the excitation energy. However, there is a lack of experimental data on such processes. Here, we explore the structural changes that follow electronic excitation in aggregates of propofol (2,6-diisopropylphenol) with up to eight water molecules, using a combination of mass-resolved excitation spectroscopy and density functional theory calculations. The molecules of water form a polyhedron around the hydroxyl group of propofol, also interacting with the π cloud of the aromatic ring. Electronic excitation produces a strong structural change in the water superstructure, which moves to an interaction with one of the carbon atoms of the aromatic ring, producing its distortion into a prefulvenic structure. Such deformation is not observed in smaller water clusters or in propofol-phenol aggregates highlighting the decisive role played by the solvent. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5093813 |