Loading…

Influence of the solvent in the electronic excitation of aromatic alcohols: Excited state IR-UV of propofol(H2O)8

It is well known that water plays an important role in the reactivity and dynamics in a solution of molecules in electronic excited states. For example, electronic excitation is usually accompanied by a solvent rearrangement that may also influence the redistribution of the excitation energy. Howeve...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-06, Vol.150 (21), p.214306-214306
Main Authors: León, Iker, Fernández, José A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that water plays an important role in the reactivity and dynamics in a solution of molecules in electronic excited states. For example, electronic excitation is usually accompanied by a solvent rearrangement that may also influence the redistribution of the excitation energy. However, there is a lack of experimental data on such processes. Here, we explore the structural changes that follow electronic excitation in aggregates of propofol (2,6-diisopropylphenol) with up to eight water molecules, using a combination of mass-resolved excitation spectroscopy and density functional theory calculations. The molecules of water form a polyhedron around the hydroxyl group of propofol, also interacting with the π cloud of the aromatic ring. Electronic excitation produces a strong structural change in the water superstructure, which moves to an interaction with one of the carbon atoms of the aromatic ring, producing its distortion into a prefulvenic structure. Such deformation is not observed in smaller water clusters or in propofol-phenol aggregates highlighting the decisive role played by the solvent.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5093813