Loading…
Tunable modulation of photonic spin Hall effect owing to the defect mode in one-dimensional photonic crystal with plasma
We have investigated theoretically the properties of the photonic spin Hall effect (PSHE) when light propagates through a one-dimensional (1D) photonic crystal (PC) with a plasma defect layer. The properties of the PSHE in both asymmetric and symmetric defective PCs are explored. The effects of the...
Saved in:
Published in: | Physics of plasmas 2019-05, Vol.26 (5) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have investigated theoretically the properties of the photonic spin Hall effect (PSHE) when light propagates through a one-dimensional (1D) photonic crystal (PC) with a plasma defect layer. The properties of the PSHE in both asymmetric and symmetric defective PCs are explored. The effects of the defect layer thickness, plasma frequency, and geometry of the structure on the properties of the PSHE are examined in detail. The results show that these factors significantly influence the behavior of the PSHE, which can be enhanced or suppressed by adjusting the plasma layer thickness and plasma frequency or manipulating the geometry of the 1D PC. Moreover, optimal angles for huge transverse displacements are also discussed in detail. These results indicate that the simple structure proposed in this study enables us to realize a tunable PSHE device that can be used to yield meaningful results in the studies of more complex systems related to the PSHE. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.5094666 |