Loading…
Low-energy ion polishing of Si in W/Si soft X-ray multilayer structures
The effect of ion polishing in sputter deposited W/Si multilayer mirrors with a d-spacing of 2.5 nm was studied. 0.1 to 0.5 nm of Si were etched with 100 eV Ar+ ions. This process resulted in a pronounced reduction in diffused scattering, measured at wavelengths about 0.1 nm. However, CuKa X-ray spe...
Saved in:
Published in: | Journal of applied physics 2019-07, Vol.126 (4) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of ion polishing in sputter deposited W/Si multilayer mirrors with a d-spacing of 2.5 nm was studied. 0.1 to 0.5 nm of Si were etched with 100 eV Ar+ ions. This process resulted in a pronounced reduction in diffused scattering, measured at wavelengths about 0.1 nm. However, CuKa X-ray specular reflectivity and AFM showed only a marginal reduction of the roughness amplitude in the systems. Furthermore, the soft X-ray reflectivity at 0.84 and 2.4 nm did not show any changes after the ion polishing as compared to the nonpolished structures. Grazing incidence X-ray reflectivity (GIXR) analysis revealed that there was no pure W present in the deposited multilayers, with WSi2 being formed instead. As a result, it was concluded that the initial roughness in W/Si multilayers grown by magnetron sputtering is not the major factor in the reflectivity deviation from the calculated value for an ideal system. Nevertheless, the grazing incidence small-angle X-ray scattering (GISAXS) analysis revealed that ion polishing reduces the vertical propagation of roughness from layer to layer by a factor of two, as well as favorably affecting the lateral correlation length and Hurst parameter. These improvements explain the reduction of diffused X-ray scattering at 0.1 nm by more than an order of magnitude, which is relevant for applications like high resolution XRD analysis. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5097378 |