Loading…
Tin-based donors in SiSn alloys
Tin-containing Group IV alloys show great promise for a number of next-generation CMOS-compatible devices. Not least of those are optoelectronic devices such as lasers and light-emitting diodes. To obtain reliable operation, a high control over the doping in such materials is needed at all stages of...
Saved in:
Published in: | Journal of applied physics 2019-07, Vol.126 (3) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tin-containing Group IV alloys show great promise for a number of next-generation CMOS-compatible devices. Not least of those are optoelectronic devices such as lasers and light-emitting diodes. To obtain reliable operation, a high control over the doping in such materials is needed at all stages of device processing. In this paper, we report tin-based donors in silicon, which appear after heat treatment of a silicon-tin alloy at temperatures between
650
°C and
900
°C. Two stages of the donor are observed, called SD I and SD II, which are formed subsequently. A broad long-lifetime infrared photoluminescence is also observed during the first stages of donor formation. We discuss evolving tin clusters as the origin of both the observed donors and the photoluminescence, in analogy to the oxygen-based thermal donors in silicon and germanium. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5099415 |