Loading…

Revealing the formation dynamics of the electric double layer by means of in-situ Rutherford backscattering spectrometry

We report on a new versatile experimental setup for in situ Rutherford backscattering spectrometry at solid-liquid interfaces which enables investigations of electric double layers directly and in a quantitative manner. A liquid cell with a three-electrode arrangement is mounted in front of the beam...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2019-08, Vol.90 (8), p.085107-085107
Main Authors: Khojasteh, Nasrin B., Apelt, Sabine, Bergmann, Ute, Facsko, Stefan, Heller, René
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on a new versatile experimental setup for in situ Rutherford backscattering spectrometry at solid-liquid interfaces which enables investigations of electric double layers directly and in a quantitative manner. A liquid cell with a three-electrode arrangement is mounted in front of the beam line, and a thin Si3N4 window (thickness down to 150 nm) separates the vacuum of the detector chamber from the electrolyte in the cell. By minimizing the contribution of the window to the measurement, a large variety of elements at the solid-liquid interface with sensitivities far below one monolayer can be monitored. The attachment of Ba onto the Si3N4 surface as a function of contact time and pH value of the electrolyte solution was chosen as an example system. From our measurement, we can not only follow the evolution of the double layer but also derive limits for the point of zero charge for the Si3N4 surface. Our findings of 5.7≤pHPZC≤6.2 are in good agreement with values found in the literature obtained by other techniques. Despite focusing on a specific system in this work, the presented setup allows for a large variety of in situ investigations at solid-liquid interfaces such as, but not limited to, tracing electrochemical reactions and monitoring segregation, adsorption, and dissolution and corrosion processes.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5100216