Loading…

Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation

Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-06, Vol.150 (24), p.244702-244702
Main Authors: Winslow, Samuel W., Shcherbakov-Wu, Wenbi, Liu, Yun, Tisdale, William A., Swan, James W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3
cites cdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3
container_end_page 244702
container_issue 24
container_start_page 244702
container_title The Journal of chemical physics
container_volume 150
creator Winslow, Samuel W.
Shcherbakov-Wu, Wenbi
Liu, Yun
Tisdale, William A.
Swan, James W.
description Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.
doi_str_mv 10.1063/1.5108904
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5108904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250633248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</originalsourceid><addsrcrecordid>eNp9kduKFDEQhoMo7rh64QtIwJtV6DWnSXcudfCwsOCNXjfpdGXNkk7GHBbGZ9iHNrMzruCCV1VQH_9fVT9CLyk5p0Tyd_R8TcmgiHiEVvum66Uij9GKEEY7JYk8Qc9yviaE0J6Jp-iEU7ZeE6lW6HbzQydtCiT3SxcXA44Wm-h9dLP2OOgQTdrl0vpck9UGcC6pmlIT4JpduMJ50d5jHa484AC1pCaSjS57zTbWYcZgrTMOQsEf9A6y0wFvm-0CjcGQi1vuvJ-jJ1b7DC-O9RR9__Tx2-ZLd_n188Xm_WVnhFCls70gcuLUKjoIwRmwuZ3DqQIDRhI9q77nCgQM1A7TbK2c1MRm4FZKDWzip-jsoLtN8Wdt_uPisgHvdYBY88hYew7nTAwNff0Peh1rCm27Rom1ooQy1ag3B8qkmHMCO25TuyntRkrGfUQjHY8RNfbVUbFOC8z35J9MGvD2AGTjyt1f7pmbmP4qjdvZ_g9-aP0bTumq0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245910129</pqid></control><display><type>article</type><title>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Winslow, Samuel W. ; Shcherbakov-Wu, Wenbi ; Liu, Yun ; Tisdale, William A. ; Swan, James W.</creator><creatorcontrib>Winslow, Samuel W. ; Shcherbakov-Wu, Wenbi ; Liu, Yun ; Tisdale, William A. ; Swan, James W.</creatorcontrib><description>Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5108904</identifier><identifier>PMID: 31255069</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic structure ; Bayesian analysis ; Coarsening ; Colloids ; Computer simulation ; Design of experiments ; Deuteration ; Form factors ; Ligands ; Markov chains ; Mathematical models ; Molecular dynamics ; Molecular structure ; Monte Carlo simulation ; Nanocrystals ; Nanomaterials ; Neutron scattering ; Parameter estimation ; Parameter uncertainty ; Perovskites ; Quantum dots ; Solvents ; Structural analysis ; Surface structure ; X-ray scattering</subject><ispartof>The Journal of chemical physics, 2019-06, Vol.150 (24), p.244702-244702</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</citedby><cites>FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</cites><orcidid>0000-0002-6615-5342 ; 0000-0003-2756-4132 ; 0000-0002-4244-8204 ; 0000-0002-0944-3153 ; 0000-0001-8898-1074 ; 0000000327564132 ; 0000000209443153 ; 0000000242448204 ; 0000000188981074 ; 0000000266155342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5108904$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31255069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winslow, Samuel W.</creatorcontrib><creatorcontrib>Shcherbakov-Wu, Wenbi</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Tisdale, William A.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><title>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.</description><subject>Atomic structure</subject><subject>Bayesian analysis</subject><subject>Coarsening</subject><subject>Colloids</subject><subject>Computer simulation</subject><subject>Design of experiments</subject><subject>Deuteration</subject><subject>Form factors</subject><subject>Ligands</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Monte Carlo simulation</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Neutron scattering</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Perovskites</subject><subject>Quantum dots</subject><subject>Solvents</subject><subject>Structural analysis</subject><subject>Surface structure</subject><subject>X-ray scattering</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kduKFDEQhoMo7rh64QtIwJtV6DWnSXcudfCwsOCNXjfpdGXNkk7GHBbGZ9iHNrMzruCCV1VQH_9fVT9CLyk5p0Tyd_R8TcmgiHiEVvum66Uij9GKEEY7JYk8Qc9yviaE0J6Jp-iEU7ZeE6lW6HbzQydtCiT3SxcXA44Wm-h9dLP2OOgQTdrl0vpck9UGcC6pmlIT4JpduMJ50d5jHa484AC1pCaSjS57zTbWYcZgrTMOQsEf9A6y0wFvm-0CjcGQi1vuvJ-jJ1b7DC-O9RR9__Tx2-ZLd_n188Xm_WVnhFCls70gcuLUKjoIwRmwuZ3DqQIDRhI9q77nCgQM1A7TbK2c1MRm4FZKDWzip-jsoLtN8Wdt_uPisgHvdYBY88hYew7nTAwNff0Peh1rCm27Rom1ooQy1ag3B8qkmHMCO25TuyntRkrGfUQjHY8RNfbVUbFOC8z35J9MGvD2AGTjyt1f7pmbmP4qjdvZ_g9-aP0bTumq0g</recordid><startdate>20190628</startdate><enddate>20190628</enddate><creator>Winslow, Samuel W.</creator><creator>Shcherbakov-Wu, Wenbi</creator><creator>Liu, Yun</creator><creator>Tisdale, William A.</creator><creator>Swan, James W.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6615-5342</orcidid><orcidid>https://orcid.org/0000-0003-2756-4132</orcidid><orcidid>https://orcid.org/0000-0002-4244-8204</orcidid><orcidid>https://orcid.org/0000-0002-0944-3153</orcidid><orcidid>https://orcid.org/0000-0001-8898-1074</orcidid><orcidid>https://orcid.org/0000000327564132</orcidid><orcidid>https://orcid.org/0000000209443153</orcidid><orcidid>https://orcid.org/0000000242448204</orcidid><orcidid>https://orcid.org/0000000188981074</orcidid><orcidid>https://orcid.org/0000000266155342</orcidid></search><sort><creationdate>20190628</creationdate><title>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</title><author>Winslow, Samuel W. ; Shcherbakov-Wu, Wenbi ; Liu, Yun ; Tisdale, William A. ; Swan, James W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic structure</topic><topic>Bayesian analysis</topic><topic>Coarsening</topic><topic>Colloids</topic><topic>Computer simulation</topic><topic>Design of experiments</topic><topic>Deuteration</topic><topic>Form factors</topic><topic>Ligands</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Monte Carlo simulation</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Neutron scattering</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Perovskites</topic><topic>Quantum dots</topic><topic>Solvents</topic><topic>Structural analysis</topic><topic>Surface structure</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winslow, Samuel W.</creatorcontrib><creatorcontrib>Shcherbakov-Wu, Wenbi</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Tisdale, William A.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winslow, Samuel W.</au><au>Shcherbakov-Wu, Wenbi</au><au>Liu, Yun</au><au>Tisdale, William A.</au><au>Swan, James W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-06-28</date><risdate>2019</risdate><volume>150</volume><issue>24</issue><spage>244702</spage><epage>244702</epage><pages>244702-244702</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31255069</pmid><doi>10.1063/1.5108904</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6615-5342</orcidid><orcidid>https://orcid.org/0000-0003-2756-4132</orcidid><orcidid>https://orcid.org/0000-0002-4244-8204</orcidid><orcidid>https://orcid.org/0000-0002-0944-3153</orcidid><orcidid>https://orcid.org/0000-0001-8898-1074</orcidid><orcidid>https://orcid.org/0000000327564132</orcidid><orcidid>https://orcid.org/0000000209443153</orcidid><orcidid>https://orcid.org/0000000242448204</orcidid><orcidid>https://orcid.org/0000000188981074</orcidid><orcidid>https://orcid.org/0000000266155342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-06, Vol.150 (24), p.244702-244702
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_5108904
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Atomic structure
Bayesian analysis
Coarsening
Colloids
Computer simulation
Design of experiments
Deuteration
Form factors
Ligands
Markov chains
Mathematical models
Molecular dynamics
Molecular structure
Monte Carlo simulation
Nanocrystals
Nanomaterials
Neutron scattering
Parameter estimation
Parameter uncertainty
Perovskites
Quantum dots
Solvents
Structural analysis
Surface structure
X-ray scattering
title Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20colloidal%20nanocrystal%20surface%20structure%20using%20small%20angle%20neutron%20scattering%20and%20efficient%20Bayesian%20parameter%20estimation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Winslow,%20Samuel%20W.&rft.date=2019-06-28&rft.volume=150&rft.issue=24&rft.spage=244702&rft.epage=244702&rft.pages=244702-244702&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5108904&rft_dat=%3Cproquest_cross%3E2250633248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2245910129&rft_id=info:pmid/31255069&rfr_iscdi=true