Loading…
Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation
Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic...
Saved in:
Published in: | The Journal of chemical physics 2019-06, Vol.150 (24), p.244702-244702 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3 |
container_end_page | 244702 |
container_issue | 24 |
container_start_page | 244702 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Winslow, Samuel W. Shcherbakov-Wu, Wenbi Liu, Yun Tisdale, William A. Swan, James W. |
description | Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials. |
doi_str_mv | 10.1063/1.5108904 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5108904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250633248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</originalsourceid><addsrcrecordid>eNp9kduKFDEQhoMo7rh64QtIwJtV6DWnSXcudfCwsOCNXjfpdGXNkk7GHBbGZ9iHNrMzruCCV1VQH_9fVT9CLyk5p0Tyd_R8TcmgiHiEVvum66Uij9GKEEY7JYk8Qc9yviaE0J6Jp-iEU7ZeE6lW6HbzQydtCiT3SxcXA44Wm-h9dLP2OOgQTdrl0vpck9UGcC6pmlIT4JpduMJ50d5jHa484AC1pCaSjS57zTbWYcZgrTMOQsEf9A6y0wFvm-0CjcGQi1vuvJ-jJ1b7DC-O9RR9__Tx2-ZLd_n188Xm_WVnhFCls70gcuLUKjoIwRmwuZ3DqQIDRhI9q77nCgQM1A7TbK2c1MRm4FZKDWzip-jsoLtN8Wdt_uPisgHvdYBY88hYew7nTAwNff0Peh1rCm27Rom1ooQy1ag3B8qkmHMCO25TuyntRkrGfUQjHY8RNfbVUbFOC8z35J9MGvD2AGTjyt1f7pmbmP4qjdvZ_g9-aP0bTumq0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245910129</pqid></control><display><type>article</type><title>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Winslow, Samuel W. ; Shcherbakov-Wu, Wenbi ; Liu, Yun ; Tisdale, William A. ; Swan, James W.</creator><creatorcontrib>Winslow, Samuel W. ; Shcherbakov-Wu, Wenbi ; Liu, Yun ; Tisdale, William A. ; Swan, James W.</creatorcontrib><description>Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5108904</identifier><identifier>PMID: 31255069</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic structure ; Bayesian analysis ; Coarsening ; Colloids ; Computer simulation ; Design of experiments ; Deuteration ; Form factors ; Ligands ; Markov chains ; Mathematical models ; Molecular dynamics ; Molecular structure ; Monte Carlo simulation ; Nanocrystals ; Nanomaterials ; Neutron scattering ; Parameter estimation ; Parameter uncertainty ; Perovskites ; Quantum dots ; Solvents ; Structural analysis ; Surface structure ; X-ray scattering</subject><ispartof>The Journal of chemical physics, 2019-06, Vol.150 (24), p.244702-244702</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</citedby><cites>FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</cites><orcidid>0000-0002-6615-5342 ; 0000-0003-2756-4132 ; 0000-0002-4244-8204 ; 0000-0002-0944-3153 ; 0000-0001-8898-1074 ; 0000000327564132 ; 0000000209443153 ; 0000000242448204 ; 0000000188981074 ; 0000000266155342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5108904$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31255069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winslow, Samuel W.</creatorcontrib><creatorcontrib>Shcherbakov-Wu, Wenbi</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Tisdale, William A.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><title>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.</description><subject>Atomic structure</subject><subject>Bayesian analysis</subject><subject>Coarsening</subject><subject>Colloids</subject><subject>Computer simulation</subject><subject>Design of experiments</subject><subject>Deuteration</subject><subject>Form factors</subject><subject>Ligands</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Monte Carlo simulation</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Neutron scattering</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Perovskites</subject><subject>Quantum dots</subject><subject>Solvents</subject><subject>Structural analysis</subject><subject>Surface structure</subject><subject>X-ray scattering</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kduKFDEQhoMo7rh64QtIwJtV6DWnSXcudfCwsOCNXjfpdGXNkk7GHBbGZ9iHNrMzruCCV1VQH_9fVT9CLyk5p0Tyd_R8TcmgiHiEVvum66Uij9GKEEY7JYk8Qc9yviaE0J6Jp-iEU7ZeE6lW6HbzQydtCiT3SxcXA44Wm-h9dLP2OOgQTdrl0vpck9UGcC6pmlIT4JpduMJ50d5jHa484AC1pCaSjS57zTbWYcZgrTMOQsEf9A6y0wFvm-0CjcGQi1vuvJ-jJ1b7DC-O9RR9__Tx2-ZLd_n188Xm_WVnhFCls70gcuLUKjoIwRmwuZ3DqQIDRhI9q77nCgQM1A7TbK2c1MRm4FZKDWzip-jsoLtN8Wdt_uPisgHvdYBY88hYew7nTAwNff0Peh1rCm27Rom1ooQy1ag3B8qkmHMCO25TuyntRkrGfUQjHY8RNfbVUbFOC8z35J9MGvD2AGTjyt1f7pmbmP4qjdvZ_g9-aP0bTumq0g</recordid><startdate>20190628</startdate><enddate>20190628</enddate><creator>Winslow, Samuel W.</creator><creator>Shcherbakov-Wu, Wenbi</creator><creator>Liu, Yun</creator><creator>Tisdale, William A.</creator><creator>Swan, James W.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6615-5342</orcidid><orcidid>https://orcid.org/0000-0003-2756-4132</orcidid><orcidid>https://orcid.org/0000-0002-4244-8204</orcidid><orcidid>https://orcid.org/0000-0002-0944-3153</orcidid><orcidid>https://orcid.org/0000-0001-8898-1074</orcidid><orcidid>https://orcid.org/0000000327564132</orcidid><orcidid>https://orcid.org/0000000209443153</orcidid><orcidid>https://orcid.org/0000000242448204</orcidid><orcidid>https://orcid.org/0000000188981074</orcidid><orcidid>https://orcid.org/0000000266155342</orcidid></search><sort><creationdate>20190628</creationdate><title>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</title><author>Winslow, Samuel W. ; Shcherbakov-Wu, Wenbi ; Liu, Yun ; Tisdale, William A. ; Swan, James W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic structure</topic><topic>Bayesian analysis</topic><topic>Coarsening</topic><topic>Colloids</topic><topic>Computer simulation</topic><topic>Design of experiments</topic><topic>Deuteration</topic><topic>Form factors</topic><topic>Ligands</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Monte Carlo simulation</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Neutron scattering</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Perovskites</topic><topic>Quantum dots</topic><topic>Solvents</topic><topic>Structural analysis</topic><topic>Surface structure</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winslow, Samuel W.</creatorcontrib><creatorcontrib>Shcherbakov-Wu, Wenbi</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Tisdale, William A.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winslow, Samuel W.</au><au>Shcherbakov-Wu, Wenbi</au><au>Liu, Yun</au><au>Tisdale, William A.</au><au>Swan, James W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-06-28</date><risdate>2019</risdate><volume>150</volume><issue>24</issue><spage>244702</spage><epage>244702</epage><pages>244702-244702</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31255069</pmid><doi>10.1063/1.5108904</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6615-5342</orcidid><orcidid>https://orcid.org/0000-0003-2756-4132</orcidid><orcidid>https://orcid.org/0000-0002-4244-8204</orcidid><orcidid>https://orcid.org/0000-0002-0944-3153</orcidid><orcidid>https://orcid.org/0000-0001-8898-1074</orcidid><orcidid>https://orcid.org/0000000327564132</orcidid><orcidid>https://orcid.org/0000000209443153</orcidid><orcidid>https://orcid.org/0000000242448204</orcidid><orcidid>https://orcid.org/0000000188981074</orcidid><orcidid>https://orcid.org/0000000266155342</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-06, Vol.150 (24), p.244702-244702 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5108904 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Atomic structure Bayesian analysis Coarsening Colloids Computer simulation Design of experiments Deuteration Form factors Ligands Markov chains Mathematical models Molecular dynamics Molecular structure Monte Carlo simulation Nanocrystals Nanomaterials Neutron scattering Parameter estimation Parameter uncertainty Perovskites Quantum dots Solvents Structural analysis Surface structure X-ray scattering |
title | Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20colloidal%20nanocrystal%20surface%20structure%20using%20small%20angle%20neutron%20scattering%20and%20efficient%20Bayesian%20parameter%20estimation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Winslow,%20Samuel%20W.&rft.date=2019-06-28&rft.volume=150&rft.issue=24&rft.spage=244702&rft.epage=244702&rft.pages=244702-244702&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5108904&rft_dat=%3Cproquest_cross%3E2250633248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-f7406b31f9184432e2d255319ecec60ad97739e4e81f8bdff6b9b2de3f66ae2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2245910129&rft_id=info:pmid/31255069&rfr_iscdi=true |