Loading…

Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition

Crack-free AlN films with threading dislocation density (TDD) below 109 cm−2 are needed for deep-UV optoelectronics. This is typically achieved using pulsed lateral overgrowth or very thick buffer layers (>10 μm), a costly and time-consuming approach. A method for conventional metalorganic chemic...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2019-10, Vol.115 (16)
Main Authors: Zollner, Christian J., Almogbel, Abdullah, Yao, Yifan, SaifAddin, Burhan K., Wu, Feng, Iza, Michael, DenBaars, Steven P., Speck, James S., Nakamura, Shuji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-fb7e4e28d48504fc1283ee9842a515695739914ac1601b588f80052425e36c053
cites cdi_FETCH-LOGICAL-c428t-fb7e4e28d48504fc1283ee9842a515695739914ac1601b588f80052425e36c053
container_end_page
container_issue 16
container_start_page
container_title Applied physics letters
container_volume 115
creator Zollner, Christian J.
Almogbel, Abdullah
Yao, Yifan
SaifAddin, Burhan K.
Wu, Feng
Iza, Michael
DenBaars, Steven P.
Speck, James S.
Nakamura, Shuji
description Crack-free AlN films with threading dislocation density (TDD) below 109 cm−2 are needed for deep-UV optoelectronics. This is typically achieved using pulsed lateral overgrowth or very thick buffer layers (>10 μm), a costly and time-consuming approach. A method for conventional metalorganic chemical vapor deposition growth of AlN/SiC films below 3 μm with greatly improved quality is presented. Focusing on substrate pretreatment before growth, we reduce average film stress from 0.9 GPa (tension) to −1.1 GPa (compression) and eliminate cracking. Next, with optimized growth conditions during initial deposition, AlN films with x-ray rocking curve widths of 123 arc-sec ( 0002) and 304 arc-sec ( 20 2 ¯ 1) are developed, and TDD is confirmed via plan view transmission electron microscopy (TEM) to be 2  × 108 cm−2. Film stress measurements including x-ray 2θ-ω, reciprocal space mapping, and curvature depict compressively stressed growth of AlN on 4H-SiC due to lattice mismatch. The thermal expansion coefficient mismatch between AlN and SiC is measured to be Δ α = α AlN − α SiC = 1.13 × 10 − 6   ° C − 1 and is found to be constant between room temperature and 1400 °C. TEM confirms the existence of dense misfit dislocation (MD) networks consistent with MD formation near SiC step edges and low MD density regions attributed to nearly coherent AlN growth on SiC terraces. These low-TDD, crack-free AlN/SiC buffers provide a platform for deep-UV optoelectronics and ultrawide bandgap electronics.
doi_str_mv 10.1063/1.5123623
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5123623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305300940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-fb7e4e28d48504fc1283ee9842a515695739914ac1601b588f80052425e36c053</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKsP_oOATwpbc93NPpbiDYqCl-eQJtmask3WZFvpvze1RR8En4aZ880Z5gBwjtEIo5Je4xHHhJaEHoABRlVVUIzFIRgghGhR1hwfg5OUFrnlhNIB8M_WrLQ10LjUBq16Fzw01ifXb6DyBkabnFmpFvbbYRadh-P2Ec5j-PQw9y9uAmcbuLS9akOcK-801O926XReWqsuxOzXhWyYt0_BUaPaZM_2dQjebm9eJ_fF9OnuYTKeFpoR0RfNrLLMEmGY4Ig1GhNBra0FI4pjnt-oaF1jpjQuEZ5xIRqxfYgRbmmpEadDcLHz7WL4WNnUy0VYRZ9PSkKzjlDNUKYud5SOIaVoG9lFt1RxIzGS2zgllvs4M3u1Y5N2_XdMP_A6xF9Qdqb5D_7r_AW1j4Js</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305300940</pqid></control><display><type>article</type><title>Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Zollner, Christian J. ; Almogbel, Abdullah ; Yao, Yifan ; SaifAddin, Burhan K. ; Wu, Feng ; Iza, Michael ; DenBaars, Steven P. ; Speck, James S. ; Nakamura, Shuji</creator><creatorcontrib>Zollner, Christian J. ; Almogbel, Abdullah ; Yao, Yifan ; SaifAddin, Burhan K. ; Wu, Feng ; Iza, Michael ; DenBaars, Steven P. ; Speck, James S. ; Nakamura, Shuji</creatorcontrib><description>Crack-free AlN films with threading dislocation density (TDD) below 109 cm−2 are needed for deep-UV optoelectronics. This is typically achieved using pulsed lateral overgrowth or very thick buffer layers (&gt;10 μm), a costly and time-consuming approach. A method for conventional metalorganic chemical vapor deposition growth of AlN/SiC films below 3 μm with greatly improved quality is presented. Focusing on substrate pretreatment before growth, we reduce average film stress from 0.9 GPa (tension) to −1.1 GPa (compression) and eliminate cracking. Next, with optimized growth conditions during initial deposition, AlN films with x-ray rocking curve widths of 123 arc-sec ( 0002) and 304 arc-sec ( 20 2 ¯ 1) are developed, and TDD is confirmed via plan view transmission electron microscopy (TEM) to be 2  × 108 cm−2. Film stress measurements including x-ray 2θ-ω, reciprocal space mapping, and curvature depict compressively stressed growth of AlN on 4H-SiC due to lattice mismatch. The thermal expansion coefficient mismatch between AlN and SiC is measured to be Δ α = α AlN − α SiC = 1.13 × 10 − 6   ° C − 1 and is found to be constant between room temperature and 1400 °C. TEM confirms the existence of dense misfit dislocation (MD) networks consistent with MD formation near SiC step edges and low MD density regions attributed to nearly coherent AlN growth on SiC terraces. These low-TDD, crack-free AlN/SiC buffers provide a platform for deep-UV optoelectronics and ultrawide bandgap electronics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5123623</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arc deposition ; Buffer layers ; Chemical vapor deposition ; Dislocation density ; Edge dislocations ; Energy gap ; Mapping ; Metalorganic chemical vapor deposition ; Misfit dislocations ; Optoelectronics ; Organic chemistry ; Pretreatment ; Substrates ; Thermal expansion ; Threading dislocations ; Transmission electron microscopy</subject><ispartof>Applied physics letters, 2019-10, Vol.115 (16)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-fb7e4e28d48504fc1283ee9842a515695739914ac1601b588f80052425e36c053</citedby><cites>FETCH-LOGICAL-c428t-fb7e4e28d48504fc1283ee9842a515695739914ac1601b588f80052425e36c053</cites><orcidid>0000-0003-4604-3762 ; 0000-0002-3870-2097 ; 0000-0002-6612-5258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5123623$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Zollner, Christian J.</creatorcontrib><creatorcontrib>Almogbel, Abdullah</creatorcontrib><creatorcontrib>Yao, Yifan</creatorcontrib><creatorcontrib>SaifAddin, Burhan K.</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Iza, Michael</creatorcontrib><creatorcontrib>DenBaars, Steven P.</creatorcontrib><creatorcontrib>Speck, James S.</creatorcontrib><creatorcontrib>Nakamura, Shuji</creatorcontrib><title>Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition</title><title>Applied physics letters</title><description>Crack-free AlN films with threading dislocation density (TDD) below 109 cm−2 are needed for deep-UV optoelectronics. This is typically achieved using pulsed lateral overgrowth or very thick buffer layers (&gt;10 μm), a costly and time-consuming approach. A method for conventional metalorganic chemical vapor deposition growth of AlN/SiC films below 3 μm with greatly improved quality is presented. Focusing on substrate pretreatment before growth, we reduce average film stress from 0.9 GPa (tension) to −1.1 GPa (compression) and eliminate cracking. Next, with optimized growth conditions during initial deposition, AlN films with x-ray rocking curve widths of 123 arc-sec ( 0002) and 304 arc-sec ( 20 2 ¯ 1) are developed, and TDD is confirmed via plan view transmission electron microscopy (TEM) to be 2  × 108 cm−2. Film stress measurements including x-ray 2θ-ω, reciprocal space mapping, and curvature depict compressively stressed growth of AlN on 4H-SiC due to lattice mismatch. The thermal expansion coefficient mismatch between AlN and SiC is measured to be Δ α = α AlN − α SiC = 1.13 × 10 − 6   ° C − 1 and is found to be constant between room temperature and 1400 °C. TEM confirms the existence of dense misfit dislocation (MD) networks consistent with MD formation near SiC step edges and low MD density regions attributed to nearly coherent AlN growth on SiC terraces. These low-TDD, crack-free AlN/SiC buffers provide a platform for deep-UV optoelectronics and ultrawide bandgap electronics.</description><subject>Applied physics</subject><subject>Arc deposition</subject><subject>Buffer layers</subject><subject>Chemical vapor deposition</subject><subject>Dislocation density</subject><subject>Edge dislocations</subject><subject>Energy gap</subject><subject>Mapping</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Misfit dislocations</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Pretreatment</subject><subject>Substrates</subject><subject>Thermal expansion</subject><subject>Threading dislocations</subject><subject>Transmission electron microscopy</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKsP_oOATwpbc93NPpbiDYqCl-eQJtmask3WZFvpvze1RR8En4aZ880Z5gBwjtEIo5Je4xHHhJaEHoABRlVVUIzFIRgghGhR1hwfg5OUFrnlhNIB8M_WrLQ10LjUBq16Fzw01ifXb6DyBkabnFmpFvbbYRadh-P2Ec5j-PQw9y9uAmcbuLS9akOcK-801O926XReWqsuxOzXhWyYt0_BUaPaZM_2dQjebm9eJ_fF9OnuYTKeFpoR0RfNrLLMEmGY4Ig1GhNBra0FI4pjnt-oaF1jpjQuEZ5xIRqxfYgRbmmpEadDcLHz7WL4WNnUy0VYRZ9PSkKzjlDNUKYud5SOIaVoG9lFt1RxIzGS2zgllvs4M3u1Y5N2_XdMP_A6xF9Qdqb5D_7r_AW1j4Js</recordid><startdate>20191014</startdate><enddate>20191014</enddate><creator>Zollner, Christian J.</creator><creator>Almogbel, Abdullah</creator><creator>Yao, Yifan</creator><creator>SaifAddin, Burhan K.</creator><creator>Wu, Feng</creator><creator>Iza, Michael</creator><creator>DenBaars, Steven P.</creator><creator>Speck, James S.</creator><creator>Nakamura, Shuji</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4604-3762</orcidid><orcidid>https://orcid.org/0000-0002-3870-2097</orcidid><orcidid>https://orcid.org/0000-0002-6612-5258</orcidid></search><sort><creationdate>20191014</creationdate><title>Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition</title><author>Zollner, Christian J. ; Almogbel, Abdullah ; Yao, Yifan ; SaifAddin, Burhan K. ; Wu, Feng ; Iza, Michael ; DenBaars, Steven P. ; Speck, James S. ; Nakamura, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-fb7e4e28d48504fc1283ee9842a515695739914ac1601b588f80052425e36c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Arc deposition</topic><topic>Buffer layers</topic><topic>Chemical vapor deposition</topic><topic>Dislocation density</topic><topic>Edge dislocations</topic><topic>Energy gap</topic><topic>Mapping</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Misfit dislocations</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Pretreatment</topic><topic>Substrates</topic><topic>Thermal expansion</topic><topic>Threading dislocations</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zollner, Christian J.</creatorcontrib><creatorcontrib>Almogbel, Abdullah</creatorcontrib><creatorcontrib>Yao, Yifan</creatorcontrib><creatorcontrib>SaifAddin, Burhan K.</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Iza, Michael</creatorcontrib><creatorcontrib>DenBaars, Steven P.</creatorcontrib><creatorcontrib>Speck, James S.</creatorcontrib><creatorcontrib>Nakamura, Shuji</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zollner, Christian J.</au><au>Almogbel, Abdullah</au><au>Yao, Yifan</au><au>SaifAddin, Burhan K.</au><au>Wu, Feng</au><au>Iza, Michael</au><au>DenBaars, Steven P.</au><au>Speck, James S.</au><au>Nakamura, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition</atitle><jtitle>Applied physics letters</jtitle><date>2019-10-14</date><risdate>2019</risdate><volume>115</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Crack-free AlN films with threading dislocation density (TDD) below 109 cm−2 are needed for deep-UV optoelectronics. This is typically achieved using pulsed lateral overgrowth or very thick buffer layers (&gt;10 μm), a costly and time-consuming approach. A method for conventional metalorganic chemical vapor deposition growth of AlN/SiC films below 3 μm with greatly improved quality is presented. Focusing on substrate pretreatment before growth, we reduce average film stress from 0.9 GPa (tension) to −1.1 GPa (compression) and eliminate cracking. Next, with optimized growth conditions during initial deposition, AlN films with x-ray rocking curve widths of 123 arc-sec ( 0002) and 304 arc-sec ( 20 2 ¯ 1) are developed, and TDD is confirmed via plan view transmission electron microscopy (TEM) to be 2  × 108 cm−2. Film stress measurements including x-ray 2θ-ω, reciprocal space mapping, and curvature depict compressively stressed growth of AlN on 4H-SiC due to lattice mismatch. The thermal expansion coefficient mismatch between AlN and SiC is measured to be Δ α = α AlN − α SiC = 1.13 × 10 − 6   ° C − 1 and is found to be constant between room temperature and 1400 °C. TEM confirms the existence of dense misfit dislocation (MD) networks consistent with MD formation near SiC step edges and low MD density regions attributed to nearly coherent AlN growth on SiC terraces. These low-TDD, crack-free AlN/SiC buffers provide a platform for deep-UV optoelectronics and ultrawide bandgap electronics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5123623</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4604-3762</orcidid><orcidid>https://orcid.org/0000-0002-3870-2097</orcidid><orcidid>https://orcid.org/0000-0002-6612-5258</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-10, Vol.115 (16)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_5123623
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Applied physics
Arc deposition
Buffer layers
Chemical vapor deposition
Dislocation density
Edge dislocations
Energy gap
Mapping
Metalorganic chemical vapor deposition
Misfit dislocations
Optoelectronics
Organic chemistry
Pretreatment
Substrates
Thermal expansion
Threading dislocations
Transmission electron microscopy
title Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20dislocation%20density%20and%20residual%20tension%20in%20AlN%20grown%20on%20SiC%20by%20metalorganic%20chemical%20vapor%20deposition&rft.jtitle=Applied%20physics%20letters&rft.au=Zollner,%20Christian%20J.&rft.date=2019-10-14&rft.volume=115&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5123623&rft_dat=%3Cproquest_cross%3E2305300940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-fb7e4e28d48504fc1283ee9842a515695739914ac1601b588f80052425e36c053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305300940&rft_id=info:pmid/&rfr_iscdi=true