Loading…
Magnetocaloric effect in Ni–Fe–Mn–Sn microwires with nano-sized γ precipitates
Ni45.6Fe3.6Mn38.4Sn12.4 microwires, with nanoscale γ-phase precipitates that enhance the magnetocaloric effects (MCEs) and mechanical properties, were prepared by a melt-extraction technique and subsequent high temperature annealing. The atomic ordering degree significantly increased after annealing...
Saved in:
Published in: | Applied physics letters 2020-02, Vol.116 (6) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ni45.6Fe3.6Mn38.4Sn12.4 microwires, with nanoscale γ-phase precipitates that enhance the magnetocaloric effects (MCEs) and mechanical properties, were prepared by a melt-extraction technique and subsequent high temperature annealing. The atomic ordering degree significantly increased after annealing, leading to a considerable increment in the structural entropy change (ΔStr) from 4.5 J/kg·K in the as-extracted microwire to 26.6 J/kg·K in the annealed one, and the magnetization difference (ΔM) from 35 A·m2/kg to 51 A·m2/kg under a magnetic field of 5.0 T. Consequently, a positive magnetic entropy change (ΔSM) peak of 15.2 J/kg·K with working temperature span (ΔTFWHM) of 12 K for the first-order martensite transformation followed by a negative ΔSM peak of −4.3 J/kg·K with ΔTFWHM = 50 K for the second-order magnetic transition under μ0ΔH = 5.0 T was achieved. By employing both magnetizing and demagnetizing processes for magnetic cooling, the two successive inverse and conventional MCEs in Ni–Fe–Mn–Sn microwires may show potential applications for micro-devices and systems. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5132767 |