Loading…
High-resolution sub-sampling incoherent x-ray imaging with a single-pixel detector
X-ray “ghost” imaging has drawn great attention for its potential to obtain images with a high resolution and lower radiation dose in medical diagnosis, even with only a single-pixel detector. However, it is hard to realize with a portable x-ray source due to its low flux. Here, we demonstrate a com...
Saved in:
Published in: | APL photonics 2020-05, Vol.5 (5), p.056102-056102-7 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | X-ray “ghost” imaging has drawn great attention for its potential to obtain images with a high resolution and lower radiation dose in medical diagnosis, even with only a single-pixel detector. However, it is hard to realize with a portable x-ray source due to its low flux. Here, we demonstrate a computational x-ray ghost imaging scheme where a real bucket detector and specially designed high-efficiency modulation masks are used, together with a robust deep learning algorithm in which a compressed set of Hadamard matrices is incorporated into a multi-level wavelet convolutional neural network. With a portable incoherent x-ray source of ∼37 µm diameter, we have obtained an image of a real object from only 18.75% of the Nyquist sampling rate. A high imaging resolution of ∼10 µm has been achieved, which is required for cancer detection and so represents a concrete step toward the realization of a practical low cost x-ray ghost imaging camera for applications in biomedicine, archeology, material science, and so forth. |
---|---|
ISSN: | 2378-0967 2378-0967 |
DOI: | 10.1063/1.5140322 |