Loading…

Local and global approaches to treat the torsional barriers of 4-methylacetophenone using microwave spectroscopy

The Fourier transform microwave spectrum of 4-methylacetophenone recorded from 8 GHz to 18 GHz under jet-cooled conditions has revealed large tunneling splittings arising from a low barrier to internal rotation of the ring methyl group and small splittings from a high torsional barrier of the acetyl...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2020-02, Vol.152 (7), p.074301-074301
Main Authors: Herbers, Sven, Fritz, Sean M., Mishra, Piyush, Nguyen, Ha Vinh Lam, Zwier, Timothy S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-4b2a3afc7d568064c8e315341145ec018d85ee2a261f8c6289e2097cea96ac3e3
cites cdi_FETCH-LOGICAL-c479t-4b2a3afc7d568064c8e315341145ec018d85ee2a261f8c6289e2097cea96ac3e3
container_end_page 074301
container_issue 7
container_start_page 074301
container_title The Journal of chemical physics
container_volume 152
creator Herbers, Sven
Fritz, Sean M.
Mishra, Piyush
Nguyen, Ha Vinh Lam
Zwier, Timothy S.
description The Fourier transform microwave spectrum of 4-methylacetophenone recorded from 8 GHz to 18 GHz under jet-cooled conditions has revealed large tunneling splittings arising from a low barrier to internal rotation of the ring methyl group and small splittings from a high torsional barrier of the acetyl methyl group. The large splittings are especially challenging to model, while the small splittings are difficult to analyze due to the resolution limit of 120 kHz. The combination of two methyl groups undergoing internal rotations caused each rotational transition to split into five torsional species, which were resolved and fitted using a modified version of the XIAM code and the newly developed ntop code to a root-mean-square deviation close to measurement accuracy, providing an estimate of the V3 potential barriers of about 22 cm−1 and 584–588 cm−1 for the ring and the acetyl methyl groups, respectively. The assignment was aided by separately fitting the five torsional species using odd-power order operators. Only one conformer in which all heavy atoms are located on a symmetry plane could be identified in the spectrum, in agreement with results from conformation analysis using quantum chemical calculations.
doi_str_mv 10.1063/1.5142401
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5142401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357999215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-4b2a3afc7d568064c8e315341145ec018d85ee2a261f8c6289e2097cea96ac3e3</originalsourceid><addsrcrecordid>eNp90c-L1DAUB_Agiju7evAfkKCXVeial6Rpc1wWdYUBL3oOmfR126VtapKOzH9vyowjCHrKDz68vLwvIa-A3QBT4gPclCC5ZPCEbIDVuqiUZk_JhjEOhVZMXZDLGB8ZY1Bx-ZxcCM7qSimxIfPWOztQOzX0YfC7dTvPwVvXYaTJ0xTQJpo6zIcQez9lsbMh9Bgi9S2VxYipOwzWYfJzh5OfkC6xnx7o2Lvgf9o90jijS8FH5-fDC_KstUPEl6f1inz_9PHb3X2x_fr5y93ttnCy0qmQO26FbV3VlKpmSroaBZRCAsgSHYO6qUtEbrmCtnaK1xo505VDq5V1AsUVeXOs62PqTXR9Qtc5P025FQMqz6JkGb07os4OZg79aMPBeNub-9utWe-YgJprBXvI9vpo83h-LBiTGfvocBjshH6JhgslWAm64pm-_Ys--iXk0a2qrLTWPP_l_HgeU4wB23MHwMyaqwFzyjXb16eKy27E5ix_B5nB-yNYf2pTDuq_1f6J9z78gWZuWvELHY236Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357999215</pqid></control><display><type>article</type><title>Local and global approaches to treat the torsional barriers of 4-methylacetophenone using microwave spectroscopy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Herbers, Sven ; Fritz, Sean M. ; Mishra, Piyush ; Nguyen, Ha Vinh Lam ; Zwier, Timothy S.</creator><creatorcontrib>Herbers, Sven ; Fritz, Sean M. ; Mishra, Piyush ; Nguyen, Ha Vinh Lam ; Zwier, Timothy S.</creatorcontrib><description>The Fourier transform microwave spectrum of 4-methylacetophenone recorded from 8 GHz to 18 GHz under jet-cooled conditions has revealed large tunneling splittings arising from a low barrier to internal rotation of the ring methyl group and small splittings from a high torsional barrier of the acetyl methyl group. The large splittings are especially challenging to model, while the small splittings are difficult to analyze due to the resolution limit of 120 kHz. The combination of two methyl groups undergoing internal rotations caused each rotational transition to split into five torsional species, which were resolved and fitted using a modified version of the XIAM code and the newly developed ntop code to a root-mean-square deviation close to measurement accuracy, providing an estimate of the V3 potential barriers of about 22 cm−1 and 584–588 cm−1 for the ring and the acetyl methyl groups, respectively. The assignment was aided by separately fitting the five torsional species using odd-power order operators. Only one conformer in which all heavy atoms are located on a symmetry plane could be identified in the spectrum, in agreement with results from conformation analysis using quantum chemical calculations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5142401</identifier><identifier>PMID: 32087663</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical Sciences ; Fourier transforms ; or physical chemistry ; Organic chemistry ; Potential barriers ; Quantum chemistry ; Rings (mathematics) ; Spectrum analysis ; Theoretical and</subject><ispartof>The Journal of chemical physics, 2020-02, Vol.152 (7), p.074301-074301</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-4b2a3afc7d568064c8e315341145ec018d85ee2a261f8c6289e2097cea96ac3e3</citedby><cites>FETCH-LOGICAL-c479t-4b2a3afc7d568064c8e315341145ec018d85ee2a261f8c6289e2097cea96ac3e3</cites><orcidid>0000-0002-4468-5748 ; 0000-0003-0916-1292 ; 0000-0002-5493-8905 ; 0000-0002-6417-4013 ; 0000000244685748 ; 0000000264174013 ; 0000000309161292 ; 0000000254938905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5142401$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32087663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.u-pec.fr/hal-03182961$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600050$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Herbers, Sven</creatorcontrib><creatorcontrib>Fritz, Sean M.</creatorcontrib><creatorcontrib>Mishra, Piyush</creatorcontrib><creatorcontrib>Nguyen, Ha Vinh Lam</creatorcontrib><creatorcontrib>Zwier, Timothy S.</creatorcontrib><title>Local and global approaches to treat the torsional barriers of 4-methylacetophenone using microwave spectroscopy</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The Fourier transform microwave spectrum of 4-methylacetophenone recorded from 8 GHz to 18 GHz under jet-cooled conditions has revealed large tunneling splittings arising from a low barrier to internal rotation of the ring methyl group and small splittings from a high torsional barrier of the acetyl methyl group. The large splittings are especially challenging to model, while the small splittings are difficult to analyze due to the resolution limit of 120 kHz. The combination of two methyl groups undergoing internal rotations caused each rotational transition to split into five torsional species, which were resolved and fitted using a modified version of the XIAM code and the newly developed ntop code to a root-mean-square deviation close to measurement accuracy, providing an estimate of the V3 potential barriers of about 22 cm−1 and 584–588 cm−1 for the ring and the acetyl methyl groups, respectively. The assignment was aided by separately fitting the five torsional species using odd-power order operators. Only one conformer in which all heavy atoms are located on a symmetry plane could be identified in the spectrum, in agreement with results from conformation analysis using quantum chemical calculations.</description><subject>Chemical Sciences</subject><subject>Fourier transforms</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Potential barriers</subject><subject>Quantum chemistry</subject><subject>Rings (mathematics)</subject><subject>Spectrum analysis</subject><subject>Theoretical and</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c-L1DAUB_Agiju7evAfkKCXVeial6Rpc1wWdYUBL3oOmfR126VtapKOzH9vyowjCHrKDz68vLwvIa-A3QBT4gPclCC5ZPCEbIDVuqiUZk_JhjEOhVZMXZDLGB8ZY1Bx-ZxcCM7qSimxIfPWOztQOzX0YfC7dTvPwVvXYaTJ0xTQJpo6zIcQez9lsbMh9Bgi9S2VxYipOwzWYfJzh5OfkC6xnx7o2Lvgf9o90jijS8FH5-fDC_KstUPEl6f1inz_9PHb3X2x_fr5y93ttnCy0qmQO26FbV3VlKpmSroaBZRCAsgSHYO6qUtEbrmCtnaK1xo505VDq5V1AsUVeXOs62PqTXR9Qtc5P025FQMqz6JkGb07os4OZg79aMPBeNub-9utWe-YgJprBXvI9vpo83h-LBiTGfvocBjshH6JhgslWAm64pm-_Ys--iXk0a2qrLTWPP_l_HgeU4wB23MHwMyaqwFzyjXb16eKy27E5ix_B5nB-yNYf2pTDuq_1f6J9z78gWZuWvELHY236Q</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Herbers, Sven</creator><creator>Fritz, Sean M.</creator><creator>Mishra, Piyush</creator><creator>Nguyen, Ha Vinh Lam</creator><creator>Zwier, Timothy S.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4468-5748</orcidid><orcidid>https://orcid.org/0000-0003-0916-1292</orcidid><orcidid>https://orcid.org/0000-0002-5493-8905</orcidid><orcidid>https://orcid.org/0000-0002-6417-4013</orcidid><orcidid>https://orcid.org/0000000244685748</orcidid><orcidid>https://orcid.org/0000000264174013</orcidid><orcidid>https://orcid.org/0000000309161292</orcidid><orcidid>https://orcid.org/0000000254938905</orcidid></search><sort><creationdate>20200221</creationdate><title>Local and global approaches to treat the torsional barriers of 4-methylacetophenone using microwave spectroscopy</title><author>Herbers, Sven ; Fritz, Sean M. ; Mishra, Piyush ; Nguyen, Ha Vinh Lam ; Zwier, Timothy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-4b2a3afc7d568064c8e315341145ec018d85ee2a261f8c6289e2097cea96ac3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Fourier transforms</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Potential barriers</topic><topic>Quantum chemistry</topic><topic>Rings (mathematics)</topic><topic>Spectrum analysis</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbers, Sven</creatorcontrib><creatorcontrib>Fritz, Sean M.</creatorcontrib><creatorcontrib>Mishra, Piyush</creatorcontrib><creatorcontrib>Nguyen, Ha Vinh Lam</creatorcontrib><creatorcontrib>Zwier, Timothy S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbers, Sven</au><au>Fritz, Sean M.</au><au>Mishra, Piyush</au><au>Nguyen, Ha Vinh Lam</au><au>Zwier, Timothy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and global approaches to treat the torsional barriers of 4-methylacetophenone using microwave spectroscopy</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-02-21</date><risdate>2020</risdate><volume>152</volume><issue>7</issue><spage>074301</spage><epage>074301</epage><pages>074301-074301</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The Fourier transform microwave spectrum of 4-methylacetophenone recorded from 8 GHz to 18 GHz under jet-cooled conditions has revealed large tunneling splittings arising from a low barrier to internal rotation of the ring methyl group and small splittings from a high torsional barrier of the acetyl methyl group. The large splittings are especially challenging to model, while the small splittings are difficult to analyze due to the resolution limit of 120 kHz. The combination of two methyl groups undergoing internal rotations caused each rotational transition to split into five torsional species, which were resolved and fitted using a modified version of the XIAM code and the newly developed ntop code to a root-mean-square deviation close to measurement accuracy, providing an estimate of the V3 potential barriers of about 22 cm−1 and 584–588 cm−1 for the ring and the acetyl methyl groups, respectively. The assignment was aided by separately fitting the five torsional species using odd-power order operators. Only one conformer in which all heavy atoms are located on a symmetry plane could be identified in the spectrum, in agreement with results from conformation analysis using quantum chemical calculations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32087663</pmid><doi>10.1063/1.5142401</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4468-5748</orcidid><orcidid>https://orcid.org/0000-0003-0916-1292</orcidid><orcidid>https://orcid.org/0000-0002-5493-8905</orcidid><orcidid>https://orcid.org/0000-0002-6417-4013</orcidid><orcidid>https://orcid.org/0000000244685748</orcidid><orcidid>https://orcid.org/0000000264174013</orcidid><orcidid>https://orcid.org/0000000309161292</orcidid><orcidid>https://orcid.org/0000000254938905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-02, Vol.152 (7), p.074301-074301
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_5142401
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Chemical Sciences
Fourier transforms
or physical chemistry
Organic chemistry
Potential barriers
Quantum chemistry
Rings (mathematics)
Spectrum analysis
Theoretical and
title Local and global approaches to treat the torsional barriers of 4-methylacetophenone using microwave spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20global%20approaches%20to%20treat%20the%20torsional%20barriers%20of%204-methylacetophenone%20using%20microwave%20spectroscopy&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Herbers,%20Sven&rft.date=2020-02-21&rft.volume=152&rft.issue=7&rft.spage=074301&rft.epage=074301&rft.pages=074301-074301&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5142401&rft_dat=%3Cproquest_cross%3E2357999215%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-4b2a3afc7d568064c8e315341145ec018d85ee2a261f8c6289e2097cea96ac3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357999215&rft_id=info:pmid/32087663&rfr_iscdi=true