Loading…

Relativistic plasma physics in supercritical fields

Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions ar...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2020-05, Vol.27 (5)
Main Authors: Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V., Thomas, A. G. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-a8e2cf4dec55ad8f0d47a0f169170e152e615f0763f154ebe5953cbc879d9d433
cites cdi_FETCH-LOGICAL-c455t-a8e2cf4dec55ad8f0d47a0f169170e152e615f0763f154ebe5953cbc879d9d433
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 27
creator Zhang, P.
Bulanov, S. S.
Seipt, D.
Arefiev, A. V.
Thomas, A. G. R.
description Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron (e−–e+) pair production. This coupling of quantum emission processes and relativistic collective particle dynamics can result in dramatically new plasma physics phenomena, such as the generation of dense e−–e+ pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultra-relativistic electron beam, which could penetrate a cm of lead, by a hair's breadth of laser light. In addition to being of fundamental interest, it is crucial to study this new regime to understand the next generation of ultra-high intensity laser-matter experiments and their resulting applications, such as high energy ion, electron, positron, and photon sources for fundamental physics studies, medical radiotherapy, and next generation radiography for homeland security and industry.
doi_str_mv 10.1063/1.5144449
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5144449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406707817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a8e2cf4dec55ad8f0d47a0f169170e152e615f0763f154ebe5953cbc879d9d433</originalsourceid><addsrcrecordid>eNqd0EtLAzEQB_AgCtbqwW-w6Elh66R57R6l-IKCIAreQpoHTdlu1mRb6Lc3yxa8m8sE5sfM8EfoGsMMAycPeMYwza8-QRMMVV0KLujp8BdQck6_z9FFShsAoJxVE0Q-bKN6v_ep97roGpW2qujWh-R1KnxbpF1no44-d1VTOG8bky7RmVNNslfHOkVfz0-fi9dy-f7ytnhclpoy1peqsnPtqLGaMWUqB4YKBQ7zGguwmM0tx8yB4MRhRu3KspoRvdKVqE1tKCFTdDPODfk4mbTvrV7r0LZW9xJzAkKIjG5H1MXws7Opl5uwi22-S84pcAGiwoO6G5WOIaVoneyi36p4kBjkEJzE8hhctvejHTbmbEL7P7wP8Q_KzjjyCwGnetg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406707817</pqid></control><display><type>article</type><title>Relativistic plasma physics in supercritical fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Zhang, P. ; Bulanov, S. S. ; Seipt, D. ; Arefiev, A. V. ; Thomas, A. G. R.</creator><creatorcontrib>Zhang, P. ; Bulanov, S. S. ; Seipt, D. ; Arefiev, A. V. ; Thomas, A. G. R.</creatorcontrib><description>Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron (e−–e+) pair production. This coupling of quantum emission processes and relativistic collective particle dynamics can result in dramatically new plasma physics phenomena, such as the generation of dense e−–e+ pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultra-relativistic electron beam, which could penetrate a cm of lead, by a hair's breadth of laser light. In addition to being of fundamental interest, it is crucial to study this new regime to understand the next generation of ultra-high intensity laser-matter experiments and their resulting applications, such as high energy ion, electron, positron, and photon sources for fundamental physics studies, medical radiotherapy, and next generation radiography for homeland security and industry.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5144449</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Energy absorption ; Lasers ; National security ; Pair production ; Photon emission ; Photons ; Physics ; Plasma ; Plasma interactions ; Plasma physics ; Quantum electrodynamics ; Radiation therapy ; Radiography ; Relativistic effects ; Relativistic electron beams ; Relativistic particles ; Relativistic plasmas ; Ultrahigh intensity lasers</subject><ispartof>Physics of plasmas, 2020-05, Vol.27 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a8e2cf4dec55ad8f0d47a0f169170e152e615f0763f154ebe5953cbc879d9d433</citedby><cites>FETCH-LOGICAL-c455t-a8e2cf4dec55ad8f0d47a0f169170e152e615f0763f154ebe5953cbc879d9d433</cites><orcidid>0000-0002-0597-0976 ; 0000-0003-3695-0051 ; 0000-0003-3206-8512 ; 0000-0003-0606-6855 ; 0000000332068512 ; 0000000205970976 ; 0000000336950051 ; 0000000306066855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5144449$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1630777$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, P.</creatorcontrib><creatorcontrib>Bulanov, S. S.</creatorcontrib><creatorcontrib>Seipt, D.</creatorcontrib><creatorcontrib>Arefiev, A. V.</creatorcontrib><creatorcontrib>Thomas, A. G. R.</creatorcontrib><title>Relativistic plasma physics in supercritical fields</title><title>Physics of plasmas</title><description>Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron (e−–e+) pair production. This coupling of quantum emission processes and relativistic collective particle dynamics can result in dramatically new plasma physics phenomena, such as the generation of dense e−–e+ pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultra-relativistic electron beam, which could penetrate a cm of lead, by a hair's breadth of laser light. In addition to being of fundamental interest, it is crucial to study this new regime to understand the next generation of ultra-high intensity laser-matter experiments and their resulting applications, such as high energy ion, electron, positron, and photon sources for fundamental physics studies, medical radiotherapy, and next generation radiography for homeland security and industry.</description><subject>Energy absorption</subject><subject>Lasers</subject><subject>National security</subject><subject>Pair production</subject><subject>Photon emission</subject><subject>Photons</subject><subject>Physics</subject><subject>Plasma</subject><subject>Plasma interactions</subject><subject>Plasma physics</subject><subject>Quantum electrodynamics</subject><subject>Radiation therapy</subject><subject>Radiography</subject><subject>Relativistic effects</subject><subject>Relativistic electron beams</subject><subject>Relativistic particles</subject><subject>Relativistic plasmas</subject><subject>Ultrahigh intensity lasers</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQB_AgCtbqwW-w6Elh66R57R6l-IKCIAreQpoHTdlu1mRb6Lc3yxa8m8sE5sfM8EfoGsMMAycPeMYwza8-QRMMVV0KLujp8BdQck6_z9FFShsAoJxVE0Q-bKN6v_ep97roGpW2qujWh-R1KnxbpF1no44-d1VTOG8bky7RmVNNslfHOkVfz0-fi9dy-f7ytnhclpoy1peqsnPtqLGaMWUqB4YKBQ7zGguwmM0tx8yB4MRhRu3KspoRvdKVqE1tKCFTdDPODfk4mbTvrV7r0LZW9xJzAkKIjG5H1MXws7Opl5uwi22-S84pcAGiwoO6G5WOIaVoneyi36p4kBjkEJzE8hhctvejHTbmbEL7P7wP8Q_KzjjyCwGnetg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Zhang, P.</creator><creator>Bulanov, S. S.</creator><creator>Seipt, D.</creator><creator>Arefiev, A. V.</creator><creator>Thomas, A. G. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0003-3695-0051</orcidid><orcidid>https://orcid.org/0000-0003-3206-8512</orcidid><orcidid>https://orcid.org/0000-0003-0606-6855</orcidid><orcidid>https://orcid.org/0000000332068512</orcidid><orcidid>https://orcid.org/0000000205970976</orcidid><orcidid>https://orcid.org/0000000336950051</orcidid><orcidid>https://orcid.org/0000000306066855</orcidid></search><sort><creationdate>202005</creationdate><title>Relativistic plasma physics in supercritical fields</title><author>Zhang, P. ; Bulanov, S. S. ; Seipt, D. ; Arefiev, A. V. ; Thomas, A. G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a8e2cf4dec55ad8f0d47a0f169170e152e615f0763f154ebe5953cbc879d9d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy absorption</topic><topic>Lasers</topic><topic>National security</topic><topic>Pair production</topic><topic>Photon emission</topic><topic>Photons</topic><topic>Physics</topic><topic>Plasma</topic><topic>Plasma interactions</topic><topic>Plasma physics</topic><topic>Quantum electrodynamics</topic><topic>Radiation therapy</topic><topic>Radiography</topic><topic>Relativistic effects</topic><topic>Relativistic electron beams</topic><topic>Relativistic particles</topic><topic>Relativistic plasmas</topic><topic>Ultrahigh intensity lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, P.</creatorcontrib><creatorcontrib>Bulanov, S. S.</creatorcontrib><creatorcontrib>Seipt, D.</creatorcontrib><creatorcontrib>Arefiev, A. V.</creatorcontrib><creatorcontrib>Thomas, A. G. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, P.</au><au>Bulanov, S. S.</au><au>Seipt, D.</au><au>Arefiev, A. V.</au><au>Thomas, A. G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic plasma physics in supercritical fields</atitle><jtitle>Physics of plasmas</jtitle><date>2020-05</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron (e−–e+) pair production. This coupling of quantum emission processes and relativistic collective particle dynamics can result in dramatically new plasma physics phenomena, such as the generation of dense e−–e+ pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultra-relativistic electron beam, which could penetrate a cm of lead, by a hair's breadth of laser light. In addition to being of fundamental interest, it is crucial to study this new regime to understand the next generation of ultra-high intensity laser-matter experiments and their resulting applications, such as high energy ion, electron, positron, and photon sources for fundamental physics studies, medical radiotherapy, and next generation radiography for homeland security and industry.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5144449</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0003-3695-0051</orcidid><orcidid>https://orcid.org/0000-0003-3206-8512</orcidid><orcidid>https://orcid.org/0000-0003-0606-6855</orcidid><orcidid>https://orcid.org/0000000332068512</orcidid><orcidid>https://orcid.org/0000000205970976</orcidid><orcidid>https://orcid.org/0000000336950051</orcidid><orcidid>https://orcid.org/0000000306066855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-05, Vol.27 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_5144449
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Energy absorption
Lasers
National security
Pair production
Photon emission
Photons
Physics
Plasma
Plasma interactions
Plasma physics
Quantum electrodynamics
Radiation therapy
Radiography
Relativistic effects
Relativistic electron beams
Relativistic particles
Relativistic plasmas
Ultrahigh intensity lasers
title Relativistic plasma physics in supercritical fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic%20plasma%20physics%20in%20supercritical%20fields&rft.jtitle=Physics%20of%20plasmas&rft.au=Zhang,%20P.&rft.date=2020-05&rft.volume=27&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5144449&rft_dat=%3Cproquest_cross%3E2406707817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-a8e2cf4dec55ad8f0d47a0f169170e152e615f0763f154ebe5953cbc879d9d433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406707817&rft_id=info:pmid/&rfr_iscdi=true