Loading…

Total energy momentum in general relativity

The energy momentum of any asymptotically flat vacuum solution to the Einstein equations is a well‐defined, conserved, Lorentz‐covariant, timelike, future‐pointing vector. The only requirement is that one be given asymptotically flat initial data that satisfy very weak continuity and falloff conditi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 1986-08, Vol.27 (8), p.2111-2128
Main Author: MURCHADHA, N. O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-c959123f532f9d62933101da4b9345fff6e952149d3db4611d7c24edff75fbb13
cites cdi_FETCH-LOGICAL-c349t-c959123f532f9d62933101da4b9345fff6e952149d3db4611d7c24edff75fbb13
container_end_page 2128
container_issue 8
container_start_page 2111
container_title Journal of mathematical physics
container_volume 27
creator MURCHADHA, N. O
description The energy momentum of any asymptotically flat vacuum solution to the Einstein equations is a well‐defined, conserved, Lorentz‐covariant, timelike, future‐pointing vector. The only requirement is that one be given asymptotically flat initial data that satisfy very weak continuity and falloff conditions; the three‐metric must go flat faster than r − 1 / 2. A large class of such data exists, consistent with the constraints, and the constraints play a key role in guaranteeing that the energy momentum is well behaved.
doi_str_mv 10.1063/1.527394
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_527394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c959123f532f9d62933101da4b9345fff6e952149d3db4611d7c24edff75fbb13</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtYq-AizcKHI1JxcZiZLKfUCBTd1HTK5lMjcSGJh3t4pI93p6sA5Hz_8B6FbwCvABX2CFSclFewMLQBXIi8LXp2jBcaE5IRV1SW6ivELY4CKsQV63PVJNZntbNiPWdu3tkvfbea7bH_cTadgG5X8wafxGl041UR78zuX6PNls1u_5duP1_f18zbXlImUa8EFEOo4JU6YgghKAYNRrBaUcedcYQUnwIShpmYFgCk1YdY4V3JX10CX6H7O1aGPMVgnh-BbFUYJWB5LSpBzyYnezXRQUavGBdVpH0--AiinL0zsYWZR-zS16bv_Iv-0hz6cnByMoz_ZSWtj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Total energy momentum in general relativity</title><source>AIP Digital Archive</source><creator>MURCHADHA, N. O</creator><creatorcontrib>MURCHADHA, N. O</creatorcontrib><description>The energy momentum of any asymptotically flat vacuum solution to the Einstein equations is a well‐defined, conserved, Lorentz‐covariant, timelike, future‐pointing vector. The only requirement is that one be given asymptotically flat initial data that satisfy very weak continuity and falloff conditions; the three‐metric must go flat faster than r − 1 / 2. A large class of such data exists, consistent with the constraints, and the constraints play a key role in guaranteeing that the energy momentum is well behaved.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527394</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Classical general relativity ; Exact sciences and technology ; General relativity and gravitation ; Physics</subject><ispartof>Journal of mathematical physics, 1986-08, Vol.27 (8), p.2111-2128</ispartof><rights>American Institute of Physics</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c959123f532f9d62933101da4b9345fff6e952149d3db4611d7c24edff75fbb13</citedby><cites>FETCH-LOGICAL-c349t-c959123f532f9d62933101da4b9345fff6e952149d3db4611d7c24edff75fbb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527394$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27903,27904,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8117108$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MURCHADHA, N. O</creatorcontrib><title>Total energy momentum in general relativity</title><title>Journal of mathematical physics</title><description>The energy momentum of any asymptotically flat vacuum solution to the Einstein equations is a well‐defined, conserved, Lorentz‐covariant, timelike, future‐pointing vector. The only requirement is that one be given asymptotically flat initial data that satisfy very weak continuity and falloff conditions; the three‐metric must go flat faster than r − 1 / 2. A large class of such data exists, consistent with the constraints, and the constraints play a key role in guaranteeing that the energy momentum is well behaved.</description><subject>Classical general relativity</subject><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtYq-AizcKHI1JxcZiZLKfUCBTd1HTK5lMjcSGJh3t4pI93p6sA5Hz_8B6FbwCvABX2CFSclFewMLQBXIi8LXp2jBcaE5IRV1SW6ivELY4CKsQV63PVJNZntbNiPWdu3tkvfbea7bH_cTadgG5X8wafxGl041UR78zuX6PNls1u_5duP1_f18zbXlImUa8EFEOo4JU6YgghKAYNRrBaUcedcYQUnwIShpmYFgCk1YdY4V3JX10CX6H7O1aGPMVgnh-BbFUYJWB5LSpBzyYnezXRQUavGBdVpH0--AiinL0zsYWZR-zS16bv_Iv-0hz6cnByMoz_ZSWtj</recordid><startdate>19860801</startdate><enddate>19860801</enddate><creator>MURCHADHA, N. O</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860801</creationdate><title>Total energy momentum in general relativity</title><author>MURCHADHA, N. O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c959123f532f9d62933101da4b9345fff6e952149d3db4611d7c24edff75fbb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Classical general relativity</topic><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MURCHADHA, N. O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MURCHADHA, N. O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total energy momentum in general relativity</atitle><jtitle>Journal of mathematical physics</jtitle><date>1986-08-01</date><risdate>1986</risdate><volume>27</volume><issue>8</issue><spage>2111</spage><epage>2128</epage><pages>2111-2128</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The energy momentum of any asymptotically flat vacuum solution to the Einstein equations is a well‐defined, conserved, Lorentz‐covariant, timelike, future‐pointing vector. The only requirement is that one be given asymptotically flat initial data that satisfy very weak continuity and falloff conditions; the three‐metric must go flat faster than r − 1 / 2. A large class of such data exists, consistent with the constraints, and the constraints play a key role in guaranteeing that the energy momentum is well behaved.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527394</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1986-08, Vol.27 (8), p.2111-2128
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_527394
source AIP Digital Archive
subjects Classical general relativity
Exact sciences and technology
General relativity and gravitation
Physics
title Total energy momentum in general relativity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20energy%20momentum%20in%20general%20relativity&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=MURCHADHA,%20N.%20O&rft.date=1986-08-01&rft.volume=27&rft.issue=8&rft.spage=2111&rft.epage=2128&rft.pages=2111-2128&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527394&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-c959123f532f9d62933101da4b9345fff6e952149d3db4611d7c24edff75fbb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true